
Oracle ® Application Server

Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Release 4.0.8.1

September 1999

Part No. A69966-01

Oracle Application Server Release 4.0.8.1 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Part No. A69966-01

Copyright © 1999, Oracle Corporation. All rights reserved.

Primary Author: Sheryl Maring

Contributing Authors: Sanjay Singh, Kai Li

Contributors: Jose Fernando, Raymond Ng, Seshu Adunuthula, Aninda Sengupta, Azariah Jeyakumar, Olga
Peschansky, Yongwen Xu

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the programs.

The programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error free. Except as may be expressly permitted in your license agreement for these programs, no part of these
programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the programs, including documentation, shall be subject to
the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, programs delivered
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software
- Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and the Oracle logo, NLS*WorkBench, Pro*COBOL, Pro*FORTRAN,
Pro*Pascal, SQL*Loader, SQL*Module, SQL*Net, SQL*Plus, Oracle7, Oracle Server, Oracle Server Manager,
Oracle Call Interface, Oracle7 Enterprise Backup Utility, Oracle TRACE, Oracle WebServer, Oracle Web
Application Server, Oracle Application Server, Oracle Network Manager, Secure Network Services, Oracle
Parallel Server, Advanced Replication Option, Oracle Data Query, Cooperative Server Technology, Oracle
Toolkit, Oracle MultiProtocol Interchange, Oracle Names, Oracle Book, Pro*C, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Preface

1 Overview - EJB and ECO/Java

Overview .. 1-2
Enterprise JavaBeans (EJB) .. 1-4
Enterprise CORBA for Java (ECO/Java)... 1-4
Comparison Between EJB and ECO/Java... 1-5

Guide for Developing Java Applications .. 1-6
Support for Oracle Application Server 4.0.7 Applications ... 1-8

Differences Between OAS 4.0.7 JCORBA and ECO/Java... 1-9
Migration Options .. 1-9

Part I Enterprise JavaBeans

2 Enterprise JavaBeans

The Enterprise JavaBeans Component Model .. 2-1
EJB Features Provided by Oracle Application Server ... 2-2

Limitations in the Current Release... 2-4
Client View of Enterprise Beans.. 2-4
Differences Between EJB Components and Web Applications... 2-5

Transport Protocol.. 2-5
Clients... 2-6

Tools and Development Process .. 2-6
Invoking PL/SQL Procedures... 2-6
iii

Development Flowchart .. 2-7

3 Creating Enterprise Beans

Steps for Creating Session Beans .. 3-1
Client Interfaces .. 3-2

Requirements for Remote and Home Interface Implementation .. 3-3
Creating the Remote Interface .. 3-3
Creating the Home Interface ... 3-5
Creating the Exception Class .. 3-6

Creating the Session Bean Class .. 3-7
Interface Implemented ... 3-7
Session Bean Example .. 3-10

Invoking Session Beans Remotely .. 3-13
Stateful and Stateless Session Beans .. 3-14

Stateful Session Bean .. 3-14
Stateless Session Bean .. 3-15
Setting the State... 3-16

Object By Value Restrictions .. 3-17

4 Creating Deployment Files

Deployment Descriptors ... 4-1
Creating Deployment Descriptors ... 4-2
Deployment Descriptor Example ... 4-8
Reference for Deployment Descriptor Classes ... 4-10

Manifest File .. 4-12
Creating the JAR File for Installation ... 4-13
Deploying Your EJB Application... 4-15
Configuring the EJB Application ... 4-17

Server-Level Parameters .. 4-17
Application Instance Parameters.. 4-18
Bean-Level Parameters... 4-18
Parameters in Detail ... 4-19

Re-deploying and Reloading Applications ... 4-22
Re-deploying Your EJB Application .. 4-22
Reloading Your EJB Application .. 4-22
iv

Improving Performance .. 4-22
Just-In-Time Compiler ... 4-22
Setting Performance Settings for Application Instances... 4-24

Debugging EJB Applications ... 4-25
The Logger Class .. 4-25
Log Files ... 4-25
Severity Levels .. 4-26
Logging Modes ... 4-26

5 Developing Clients for EJB Applications

Overview .. 5-2
Getting the Object Reference for a Bean.. 5-2

JNDI in the Application Server... 5-3
Navigating the Name Space.. 5-3
Accessing the Naming Server from a Client... 5-4
Identify and Lookup the Desired Object... 5-6
Accessing C++ and Existing JCORBA Applications ... 5-12

Invoking Methods on the Object .. 5-12
Destroying an Object ... 5-13
JNDI Supported Features.. 5-13
Files Required by Clients.. 5-15

Files Required by Applets ... 5-15
APPLET Tags ... 5-16
Performance Features of the JNDI Provider.. 5-16

Co-Location of Beans ... 5-17
The Caching Strategy ... 5-17
Cache Cleanup .. 5-17
Terminating Application Instances.. 5-18

6 Transactions in EJB Objects

Overview .. 6-1
Transaction Parameters in the Deployment Descriptor.. 6-2
JTS-Enabled JDBC Driver .. 6-3

Declarative Transactions ... 6-4
v

Defining Declarative Transactions ... 6-4
Declarative Transaction Example... 6-7

Programmatic Transactions ... 6-13
The UserTransaction Object .. 6-14
Programmatic Transaction Example.. 6-14

Transactions and Threads.. 6-19
Transactions for Stateful and Stateless Objects .. 6-20

7 Migrating to OAS 4.0.8 EJB Applications

Migrating OAS 4.0.7 JCORBA Applications ... 7-1
Transforming the Remote Interface ... 7-2
Creating Home Interfaces.. 7-2
Transforming the JCORBA Object Implementation .. 7-3
Making your Parameters Serializable.. 7-7
Converting JCO.APP to EJB Deployment Descriptors.. 7-7
Migrating 4.0.7 JCORBA Clients... 7-12

Migrating Enterprise CORBA Objects (ECO/Java) .. 7-12
Migrating OAS ECO/Java Clients ... 7-13
Converting ECO.APP to EJB Deployment Descriptors... 7-13

Migrating OAS 4.0.7 EJB Applications ... 7-14

8 Deploying Applications Using oasdeploy

Overview of oasdeploy .. 8-1
oasdeploy Syntax .. 8-2
Deployment Scenarios ... 8-5

Deploying on a Primary Node.. 8-6
Deploying on Remote Nodes .. 8-6
Redeploying Existing Applications.. 8-6
Deploying on a New Node.. 8-7
Removing Existing Applications .. 8-7

Downloading to a Client ... 8-7
Downloading Client JAR File.. 8-8

Security ... 8-8
vi

9 Reference

Logger Class... 9-2
setSeverity.. 9-2
getSeverity ... 9-3

OASApplicationDescriptor Class ... 9-4
OASApplicationDescriptor constructor .. 9-4
getOtherApplications... 9-5
getTxDads.. 9-5
getTxEnabled... 9-6
isTxEnabled ... 9-6
setOtherApplications ... 9-7
setTxDads .. 9-7
setTxEnabled ... 9-8
getAuthenticationString .. 9-8
getMaxInstances ... 9-9
getMinInstances .. 9-9
setAuthenticationString... 9-10
setMaxInstances .. 9-11
setMinInstances... 9-11

Part II Enterprise CORBA for Java

10 Enterprise CORBA Objects for Java

The Enterprise CORBA Objects for Java Component Model.. 10-1
ECO/Java Features in Oracle Application Server ... 10-2

Limitations in the Current Release... 10-4
Client View of ECO/Java Objects .. 10-4
Differences Between ECO/Java Applications and Web Applications 10-5

Transport Protocol.. 10-5
Clients... 10-6

Tools and Development Process .. 10-6
Invoking PL/SQL Procedures... 10-6
Development Flowchart .. 10-7
vii

11 Creating ECO/Java Objects

Steps for Creating ECO/Java Objects.. 11-2
Client Interfaces .. 11-2

Requirements for Remote and Home Interface Implementation .. 11-3
Creating the Remote Interface .. 11-3
Creating the Home Interface ... 11-5
Creating the Exception Class .. 11-6

Creating the SessionBean Class ... 11-6
Interface Implemented ... 11-7
ECO/Java Object Example .. 11-10

Invoking ECO/Java Objects Remotely ... 11-13
Stateful and Stateless ECO/Java Objects ... 11-14

Stateful Object ... 11-14
Stateless Object .. 11-15
Setting the State... 11-16

Transforming Your CORBA IDL Application into ECO/Java .. 11-17
Creating the Master IDL File... 11-17
Migrating CORBA Objects to the Application Server ... 11-18
Migrating IDL Definitions to the Application Server.. 11-19

Guidelines for Easy Conversion to EJB .. 11-20

12 Creating the Deployment Information File

Overview .. 12-1
Structure of the Deployment Information File ... 12-2

The Application Section... 12-3
The Object Section... 12-4
Example Deployment Information Files ... 12-6

Retrieving Values from the Deployment Information File .. 12-8
Creating the JAR File for Installation ... 12-8
Deploying your ECO/Java Application .. 12-10
Configuring the ECO/Java Application .. 12-12

Server-Level Parameters .. 12-12
Application Instance Parameters.. 12-13
Object-Level Parameters .. 12-14
Parameters in Detail ... 12-14
viii

Re-deploying and Reloading Applications ... 12-17
Re-deploying Your ECO/Java Application.. 12-17
Reloading Your ECO/Java Application.. 12-17

Improving Performance .. 12-18
Just-In-Time Compiler ... 12-18
Setting Performance Settings for Application Instances... 12-20

Debugging ECO/Java Applications .. 12-20
The Logger Class .. 12-21
Log Files ... 12-21
Severity Levels .. 12-21
Logging Modes ... 12-22

13 Developing Clients for ECO/Java Applications

Overview .. 13-2
Getting the Object Reference for an Object .. 13-3

JNDI in the Application Server... 13-3
Navigating the Name Space.. 13-3
Accessing the Naming Server from a Client... 13-4
Identify and Lookup the Desired Object... 13-6

Invoking Methods on the Object .. 13-12
Destroying an Object ... 13-13
JNDI Supported Features.. 13-13
Files Required by Clients.. 13-14

Files Required by Java Clients .. 13-15
Files Required by Non-Java Clients ... 13-15
Files Required by Applets ... 13-16

APPLET Tags ... 13-17
Creating Callbacks ... 13-17

Create the Client-side CORBA object .. 13-18
Create the Callback within the Server-side ECO/Java object.. 13-18
Example.. 13-19

Performance Features of the JNDI Provider.. 13-25
Co-Location of Objects... 13-25
The Caching Strategy ... 13-25
Cache Cleanup .. 13-26
ix

Terminating Application Instances.. 13-26

14 Transactions in ECO/Java Objects

Overview .. 14-1
Transaction Parameters in the Deployment Information File.. 14-2
JTS-Enabled JDBC Driver .. 14-3

Declarative Transactions.. 14-4
Configuring Declarative Transactions... 14-4
Declarative Transaction Example... 14-7
JCO.APP ... 14-7
Remote Interface for the ECO/Java Object ... 14-8
ECO/Java Object... 14-8
Client... 14-10

Programmatic Transactions ... 14-11
The UserTransaction Object .. 14-12
Programmatic Transaction Example.. 14-13
JCO.APP ... 14-13

Transactions and Threads.. 14-16
Transactions for Stateful and Stateless Objects .. 14-17

15 Migrating JCORBA Applications to ECO/Java

Migrating JCORBA Server Objects... 15-1
Remote Interfaces.. 15-2
Home Interfaces .. 15-2
Implementation Class .. 15-2
LifeCycle Interfaces .. 15-2
ObjectManager .. 15-3
JCO.APP ... 15-3
Example.. 15-3

Converting JCO.APP to ECO.APP... 15-7
Application Section... 15-8
Object Section .. 15-8

Migrating Clients .. 15-9
x

16 Reference

ECOBean Interface ... 16-4
ECOContext Interface .. 16-5

getCallerIdentity ... 16-5
getEnvironment .. 16-5
getHome... 16-6
getRollbackOnly ... 16-6
getUserTransaction... 16-7
isCallerInRole .. 16-7
setRollbackOnly.. 16-7

ECOMetaData Interface .. 16-9
getHomeInterfaceClass.. 16-9
getECOHome .. 16-9
getPrimaryKeyClass... 16-10
getRemoteInterfaceClass ... 16-10
isSession ... 16-10

Handle Interface ... 16-11
getECOObject .. 16-11

SessionBean Interface .. 16-12
setSessionContext ... 16-12
ecoRemove... 16-13
ecoPassivate... 16-13
ecoActivate .. 16-13

SessionContext Interface... 16-15
getECOObject .. 16-15

UserTransaction Interface ... 16-16
begin ... 16-17
commit.. 16-17
getStatus... 16-18
rollback... 16-18
setRollbackOnly.. 16-18
setTransactionTimeout .. 16-19

Logger Class... 16-20
setSeverity.. 16-21
getSeverity ... 16-22
xi

PortableRemoteObject Class .. 16-23
narrow .. 16-23
exportObject... 16-23
unexportObject.. 16-24

HeuristicMixedException Exception... 16-25
HeuristicMixedException() ... 16-25
HeuristicMixedException(String)... 16-25

HeuristicRollbackException Exception .. 16-26
HeuristicRollbackException() ... 16-26
HeuristicRollbackException(String)... 16-26

TransactionRolledbackException Exception ... 16-27
TransactionRolledbackException() .. 16-27
TransactionRolledbackException(String).. 16-27

Part III Oracle Application Server ORB for Java

17 Accessing CORBA Objects from Java

Version Requirements for Using Oracle Application Server ORB 17-2
Creating a CORBA Object within the ORB... 17-2
Steps in the Development Process .. 17-3
Writing a Simple Server and Client .. 17-3

Define the Object’s Interface through IDL .. 17-5
Compiling the IDL File .. 17-5

Using the IDL-to-Java Compiler .. 17-7
Implementing the Interface Methods .. 17-10
Defining the Operations .. 17-11
Writing the Server Application... 17-12
Writing a Client Application... 17-14

Running the Server and Client Applications .. 17-16
Executing Legacy Code through the Tie Mechanism... 17-18

Changes to the Implementation.. 17-19
Changes to the Server... 17-19
xii

18 IDL Syntax and Semantics

About IDL .. 18-2
How IDL Compares to C++ .. 18-2

Lexical Conventions ... 18-3
Alphabetic Characters.. 18-3
Decimal Digits... 18-5
Graphic Characters... 18-5
Formatting Characters ... 18-7
Tokens .. 18-7
Comments.. 18-7
Identifiers ... 18-7
Keywords... 18-8
Punctuation Characters ... 18-9
Preprocessor Tokens .. 18-9
Literals.. 18-9

IDL Preprocessing .. 18-11
Version control.. 18-12

IDL Grammar .. 18-13
IDL Specification .. 18-19

Module Declaration.. 18-19
Interface Declar1spbation.. 18-20

Inheritance ... 18-23
Constant Declarations.. 18-25

Syntax ... 18-25
Semantics ... 18-26

Type Declaration ... 18-29
Basic Types .. 18-30
Constructed Types.. 18-33
Template Types... 18-36
Complex Declarator ... 18-38
Native Types ... 18-38

Exception Declaration .. 18-39
Operation Declaration ... 18-40

Operation Attribute.. 18-41
Parameter Declarations.. 18-41
xiii

Raises Expressions .. 18-42
Context Expressions ... 18-42

Attribute Declaration ... 18-43
CORBA Module .. 18-44
Names and Scoping .. 18-44

Inherited Names.. 18-46
Nested Types ... 18-47

Standard Exceptions ... 18-48

19 IDL-to-Java Language Mapping

Using the IDL/Java Language Mappings ... 19-1
Summary of IDL-to-Java Mappings... 19-2
Names... 19-4
Reserved Names ... 19-4
Modules.. 19-5
Basic Types... 19-5
Holder Classes... 19-7
Helper Classes ... 19-10
Boolean ... 19-10
Character Types .. 19-11
Octet.. 19-11
String Types... 19-11
Integer Types ... 19-11
Constants.. 19-12
Enumerated Types.. 19-13
Structures ... 19-14
Unions .. 19-15
Sequences ... 19-16
Arrays ... 19-17
Interfaces .. 19-18
Exceptions .. 19-21
The IDL Any Type .. 19-24
Types Nested Within Interfaces.. 19-27
Typedefs ... 19-28

CORBA Pseudo-Object API for Java Clients .. 19-28
xiv

Environment .. 19-30
Exceptions .. 19-30
Exception Lists... 19-31
Name-Value Pairs ... 19-31
NV Lists .. 19-33
Contexts .. 19-33
ContextList ... 19-34
Request ... 19-35
ServerRequest.. 19-36
TCKind ... 19-37
TypeCode.. 19-39
ORB ... 19-40

list_initial_services.. 19-47
resolve_initial_references .. 19-47
list_initial_services_remote ... 19-48
resolve_initial_references_remote.. 19-48
object_to_string.. 19-49
string_to_object.. 19-49
connect ... 19-49
connect ... 19-50
connect ... 19-50
connect ... 19-50
disconnect.. 19-51
create_struct_tc ... 19-51
create_union_tc .. 19-51
create_enum_tc ... 19-52
create_alias_tc ... 19-52
create_exception_tc... 19-53
create_interface_tc ... 19-53
create_string_tc... 19-54
create_wstring_tc .. 19-54
create_sequence_tc .. 19-54
create_recursive_sequence_tc... 19-55
create_array_tc .. 19-55
get_primitive_tc ... 19-55
xv

create_any .. 19-56
create_output_stream .. 19-56
init ... 19-56
init ... 19-57
init ... 19-57
bind... 19-58
bind... 19-58
bind... 19-59
run ... 19-60
stop.. 19-60
shutdown ... 19-60

Object (CORBA::Object) ... 19-60
_is_a .. 19-61
_is_equivalent.. 19-62
_non_existent... 19-62
_hash... 19-63
_duplicate... 19-63
_release ... 19-63
_get_implementation.. 19-63
_get_interface... 19-64

Index
xvi

Preface

Audience
This book is written for users who develop JCORBA and Enterprise JavaBeans
applications for Oracle Application Server.

The Oracle Application Server Documentation Set
This table lists the Oracle Application Server documentation set.

Title of Book Part No.

Oracle Application Server 4.0.8 Documentation Set A66971-03

Oracle Application Server Overview and Glossary A60115-03

Oracle Application Server Installation Guide for Sun SPARC Solaris 2.x A58755-03

Oracle Application Server Installation Guide for Windows NT A58756-03

Oracle Application Server Administration Guide A60172-03

Oracle Application Server Security Guide A60116-03

Oracle Application Server Performance and Tuning Guide A60120-03

Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications A66958-02

Oracle Application Server Developer’s Guide: JServlet Applications A73043-01

Oracle Application Server Developer’s Guide: LiveHTML and Perl Applications A66960-02

Oracle Application Server Developer’s Guide: EJB, ECO/Java and CORBA Applications A69966-01

Oracle Application Server Developer’s Guide: C++ CORBA Applications A70039-01

Oracle Application Server PL/SQL Web Toolkit Reference A60123-03

Oracle Application Server PL/SQL Web Toolkit Quick Reference A60119-03
 xvii

Conventions
This table lists the typographical conventions used in this manual.

The term “Oracle Server” refers to the database server product from Oracle Corpo-
ration.

The term “oracle” refers to an executable or account by that name.

The term “oracle” refers to the owner of the Oracle software.

Oracle Application Server JServlet Toolkit Reference A73045-01

Oracle Application Server JServlet Toolkit Quick Reference A73044-01

Oracle Application Server Cartridge Management Framework A58703-03

Oracle Application Server 4.0.8.1 Release Notes A66106-04

Convention Example Explanation

bold oas.h
owsctl
wrbcfg
www.oracle.com

Identifies file names,
utilities,
processes,
and URLs

italics file1 Identifies a variable in text; replace this place
holder with a specific value or string.

angle brackets <filename> Identifies a variable in code; replace this place
holder with a specific value or string.

courier owsctl start wrb Text to be entered exactly as it appears. Also
used for functions.

square brackets [-c string]

[on|off]

Identifies an optional item.

Identifies a choice of optional items, each sep-
arated by a vertical bar (|), any one option
can be specified.

braces {yes|no} Identifies a choice of mandatory items, each
separated by a vertical bar (|).

ellipses n,... Indicates that the preceding item can be
repeated any number of times.

Title of Book Part No.
xviii

Technical Support Information
Oracle Global Support can be reached at the following numbers:

■ In the USA: Telephone: 1.650.506.1500

■ In Europe: Telephone: +44 1344 860160

■ In Asia-Pacific: Telephone: +61. 3 9246 0400

Please prepare the following information before you call, using this page as a check-
list:

❏ your CSI number (if applicable) or full contact details, including any special
project information

❏ the complete release numbers of the Oracle Application Server and associated
products

❏ the operating system name and version number

❏ details of error codes and numbers and descriptions. Please write these down
as they occur. They are critical in helping WWCS to quickly resolve your prob-
lem.

❏ a full description of the issue, including:

■ What - What happened? For example, the command used and its result.

■ When -When did it happen? For example, during peak system load, or
after a certain command, or after an operating system upgrade.

■ Where -Where did it happen? For example, on a particular system or
within a certain procedure or table.

■ Extent - What is the extent of the problem? For example, production sys-
tem unavailable, or moderate impact but increasing with time, or minimal
impact and stable.

❏ Keep copies of any trace files, core dumps, and redo log files recorded at or
near the time of the incident. WWCS may need these to further investigate
your problem. For a list of trace and log files, see “Configuration and Log Files”
in the Administration Guide.

For installation-related problems, please have the following additional information
available:

❏ listings of the contents of $ORACLE_HOME (Unix) or %ORACLE_HOME%
(NT) and any staging area, if used.
xix

❏ installation logs (install.log, sql.log, make.log, and os.log) typically stored in
the $ORACLE_HOME/orainst (Unix) or %ORACLE_HOME%\orainst (NT)
directory.

Documentation Sales and Client Relations
In the United States:

■ To order hardcopy documentation, call Documentation Sales: 1.800.252.0303.

■ For shipping inquiries, product exchanges, or returns, call Client Relations:
1.650.506.1500.

In the United Kingdom:

■ To order hardcopy documentation, call Oracle Direct Response:
+44 990 332200.

■ For shipping inquiries and upgrade requests, call Customer Relations:
+44 990 622300.
xx

Reader’s Comment Form

Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications
Part No. A69966-01

Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information
used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have suggestions for improvement, please indicate the
topic, chapter, and page number below:

Please send your comments to:

Oracle Application Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065

If you would like a reply, please provide your name, address, and telephone num-
ber below:

Thank you for helping us improve our documentation.
xxi

xxii

Overview - EJB and
1

Overview - EJB and ECO/Java

This chapter presents an overview of the EJB and ECO/Java infrastructure in Ora-
cle Application Server.

Contents
■ Overview

■ Guide for Developing Java Applications

■ Support for Oracle Application Server 4.0.7 Applications

■ Migration Options
 ECO/Java 1-1

Overview
Overview
More and more, the industry focus is on creating standards so that different ven-
dor’s software can interoperate. In addition, this means that moving forward in
technology does not necessarily mean having to discard existing server technology.
For distributed object networking, there are two standards that have become pre-
dominant: Enterprise JavaBeans (EJB) and OMG CORBA.

■ EJB is a Java language based standard that enables Java programmers to com-
bine software from multiple vendors for a business solution. The client and
server language is limited to Java.

■ CORBA is a multi-language based standard that enables programmers to com-
bine software from multiple vendors for a business solution.

Both are widely used; yet, both cannot fully interoperate.

■ EJB inherits its remote access through Remote Method Invocation (RMI). In
doing so, EJB supports passing objects by value. Java is the only language that
can pass objects by value. Thus, EJB components can only interact with Java cli-
ents.

■ CORBA supports any language that adheres to the CORBA IDL specification.
Its interface types does not include supporting passing objects by value.
Because of this fact, CORBA can support non-Java clients. However, it cannot
interoperate with any client that inherits from RMI. It cannot interoperate with
EJB components.

To support only one of these standards and not the other would be unacceptable.
To be able to support all languages as well as both standards, Oracle Application

CORBA EJB
1-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Overview
Server provides an EJB and a CORBA stack. Both CORBA and certain languages
are moving towards supporting RMI’s passing objects by value. When they do, Ora-
cle Application Server will only need to support one of these standards to be able
to service clients in all languages.

Oracle Application Server provides EJB 1.0 support within the EJB framework;
CORBA support is provided through the Enterprise CORBA Object for Java (ECO/
Java) framework.

When non-Java languages and CORBA support passing objects by value, there will
be no need for both frameworks. The EJB framework will be able to support all lan-
guage types. And since EJB is built upon a CORBA base, it will also be able to sup-
port all CORBA clients.

At this time, your ECO/Java applications can be converted to EJB applications to
continue adding future support. Because of this, you should write your ECO/Java
application within the guidelines presented in Chapter 11, “Creating ECO/Java
Objects”. A conversion tool will be provided to facilitate converting your ECO/
Java application to EJB compliance.

The following sections discuss the both of these standards and then lists the major
differences between EJB and ECO/Java.

CORBA EJB

 Oracle Application Server

client client client
Overview - EJB and ECO/Java 1-3

Overview
Enterprise JavaBeans (EJB)
Oracle Application Server provides EJB 1.0 compliant support of the Javasoft EJB
specification.With normal Java applications, you develop your client to access an
object instance that exists on a remote server. You can use several different types of
networking protocols, like IIOP, to access the remote server. With EJB and the appli-
cation server’s ECO/Java paradigms, the remote object instance is encapsulated
within a component. A component provides a structure for the bean instance that
includes the following:

■ two interfaces that the client uses to create the instance and access its methods

■ access to certain support services, such as transactions, lifecycle, and naming

Sun’s Enterprise JavaBeans (EJB) standard inherits from Java Remote Method Invo-
cation (RMI) through EJB’s home and remote interfaces. The RMI remote interface
is the root of the inheritance hierarchy for all remote Java components.

With the EJB framework, any object that is provided as a method argument is serial-
ized and sent across the network. RMI uses object serialization to transfer objects
between JVMs. This is referred to as passing an object by value. Since passing
object by value is only possible within Java, only Java clients can access EJB compo-
nents.

Enterprise CORBA for Java (ECO/Java)
The ECO/Java component model was developed with two principles in mind:

1. Support clients that cannot interact with EJB—at this time. Currently, EJB only
supports clients that conform to EJB specifications and include the ability to
pass objects by value. Certain languages and browsers do not support this fea-
ture.

ECO/Java can support clients from any language that is CORBA-compliant
(version 2.2). One of the major advantages for using CORBA is that it supports
multiple languages. ECO/Java is a method for creating CORBA objects with-
out needing to generate IDL. Oracle Application Server creates all of the IDL
skeletons necessary for each ECO/Java application.

Note: While these sections discuss a client’s ability to access
either EJB or ECO/Java, it is possible for a Java client to access
both an EJB application and an ECO/Java application.
1-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Overview
2. Provide a framework that can be easily migrated to EJB. There will be a time
when CORBA, non-Java clients, and EJB components can interoperate. When
this occurs, the application server will support full EJB compliance for all its
server applications. Since its EJB stack is founded upon a CORBA base, all
CORBA clients will be able to interoperate with the EJB components. So, all cur-
rent ECO/Java components should be written in a way to be phased into EJB
components. Thus, ECO/Java components look almost exactly like an EJB com-
ponent. ECO/Java has the same basic framework as EJB. For example, it uses
containers to support ECO/Java components.

Comparison Between EJB and ECO/Java
Both EJB and ECO/Java branch off from the same component runtime. That is,
most of the runtime both branches is the same. The differences are shown to you, as
the user. However, the core runtime for both branches ensures that the behavior of
both models is the same. And that eventually, when object by value exists in both
branches, they will inter-operate.

The table below summarizes the differences between the ECO/Java and EJB imple-
mentations:

Table 1–1 Differences between ECO/Java and Enterprise JavaBeans

Component EJB ECO/Java

Interface
inheritance

Remote access by interfaces
that inherit from
javax.rmi.Remote

Remote access by interfaces
that inherit from
org.omg.CORBA.Object

Method
Arguments

EJB supports RMI. Thus,
parameter passing is defined
by RMI semantics. Objects are
passed by value. Only clients
that support object by value
can call an EJB application.

Parameter passing is defined
by CORBA 2.2 IDL semantics.
Overview - EJB and ECO/Java 1-5

Guide for Developing Java Applications
Guide for Developing Java Applications
Oracle Application Server provides two options for developing remote Java appli-
cations.

■ Enterprise JavaBeans (EJB) is a framework for developing Java applications
and clients that is an industry standard. Our EJB implementation rests on top

Deployment
Information

The deployment is defined
according to the EJB specifica-
tion. Currently, the deploy-
ment information is stored in
serialized deployment descrip-
tor files (one for each applica-
tion and one for each bean)
and a manifest file.

Stored in a plain text file.

Exceptions All system exceptions extend
from java.rmi.RemoteEx-
ception which need to be
caught and handled.

All system exceptions extend
from org.omg.CORBA.Syste-
mException which extends
java.lang.RuntimeExcep-
tion .

Threading
support

Single threaded Single threaded

Access from
Microsoft Inter-
net Explorer
clients

Only supported in an intranet
environment using JavaSoft
activation

Supported in both internet and
intranet

Implementation
language

Only in Java Java and C++; although full
support for ECO/C++ will be
available in the next release.

Access from
non-Java clients

No Yes

Lifecycle,
Transaction,
and Security

EJB 1.0 support Similar to EJB 1.0

Table 1–1 Differences between ECO/Java and Enterprise JavaBeans

Component EJB ECO/Java
1-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Guide for Developing Java Applications
of the CORBA base, so you receive all of the benefits of CORBA and EJB. See
Part I, “Enterprise JavaBeans” for more information.

■ Enterprise CORBA Objects for Java (ECO/Java) is a framework, similar to EJB,
for developing applications that can be accessed by Java or non-Java clients. It
is also a simpler way to develop CORBA applications in Java, because you do
not generate the CORBA IDL files. The application server generates the neces-
sary IDL stub and skeleton files for your application. See Part II, “Enterprise
CORBA Objects for Java” for more information.

The following is a usage guide for developing applications using the EJB or ECO/
Java APIs. Use this table to decide which API to use.

Note: If you want to develop your own CORBA applications
from IDL, you can use our ORB and IDL compiler. The CORBA
Java API is supported within Oracle Application Server. However,
any straight CORBA applications are not part of Oracle Applica-
tion Server’s realm; thus, you will not be able to monitor or man-
age the application from the Oracle Application Server Manager.
The only way that a CORBA application can be managed by the
application server is if you transform it to be an ECO/Java applica-
tion. See Part III, “Accessing CORBA Objects from Java” for infor-
mation on creating CORBA applications. See Part II, “Enterprise
CORBA Objects for Java” for information on transforming an exist-
ing CORBA application into an ECO/Java application.

Use EJB when: Use ECO/Java when:

Parameter passing is defined by
RMI semantics. Objects are passed
by value.

Parameter passing is defined by CORBA
IDL semantics.

All your clients must be written in
Java.

Your clients are written in Java or other
CORBA supported languages.

Clients may only invoke an EJB
application from a browser that
includes the Java Remote Invocation
(RMI) libraries.

Clients may be invoked from browsers that
do not include the Java Remote Invocation
(RMI) libraries. For example, most
Microsoft Internet Explorer browsers do not
ship with the RMI libraries.
Overview - EJB and ECO/Java 1-7

Support for Oracle Application Server 4.0.7 Applications
Benefits provided by the application server for ECO/Java and EJB applications
include the following:

■ The management GUI for EJB applications is similar to that for other applica-
tions in the application server. Through this GUI, you can monitor machines on
the network to check the status of running processes. In addition, you can dis-
tribute your application on multiple nodes on the network in order to balance
the load and achieve maximum performance.

■ You can change the logging level for your applications. For example, while you
are developing your applications, you can set the logging level to a high value
so that more messages are logged and used for debugging, and reduce the log-
ging level when in deployment mode.

■ You do not have to understand CORBA infrastructure to deploy beans in a
CORBA environment because the support files are generated automatically for
you.

Support for Oracle Application Server 4.0.7 Applications

4.0.7 Application Description

4.0.7 JCORBA Existing 4.0.7 JCORBA applications will run transparently on
Oracle Application Server 4.0.8; however, they will need to be
redeployed. We recommend migrating these applications to
ECO/Java or EJB. Refer to the section “Migration Options” for
information. Any new development should use EJB or ECO/
Java.

4.0.7 EJB Existing 4.0.7 EJB applications need to be converted to the EJB
1.0 specification. The 4.0.7 EJB applications were developed to
the 0.5 specification. There are significant differences between
the 0.5 and 1.0 EJB specifications.
1-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migration Options
Differences Between OAS 4.0.7 JCORBA and ECO/Java
The table below outlines the differences between 4.0.7 JCORBA and ECO/Java.
ECO/Java is considered the replacement for JCORBA.

Migration Options
Several migration scenarios exist for your ECO/Java or EJB application in Oracle
Application Server. The options are listed in Table 1–3.

Table 1–2 Differences between ECO/Java and 4.0.7 JCORBA

Feature ECO/Java 4.0.7 JCORBA

Object creation
and references

Each ECO/Java component
has a home and remote inter-
face with similar functionality
as the home and remote inter-
face of an EJB component.
This home interface allows a
client to create an instance of
the corresponding ECO/Java
object instance.

To retrieve object references,
use JNDI.

4.0.7 JCORBA object imple-
ments the JCORemote inter-
face for access its objects.

Uses the ObjectFactory class
to get object references.

Lifecycle The lifecycle for ECO/Java is
similar to the lifecycle for EJB
components.

The LifeCycle interface from
OAS 4.0.7 JCORBA is propri-
etary.

JNDI support ECO/Java uses a new JNDI
server provider, which is
based upon CosNaming. The
new package for JNDI is ora-
cle.oas.naming.jndi.

4.0.7 JCORBA uses the ora-
cle.oas.jndi package for
its JNDI support.

Stateless objects ECO/Java stateless object sup-
port is consistent with EJB 1.0
specifications.

4.0.7 JCORBA stateless object
support is consistent with
CORBA 2.0 specifications.

Threading support ECO/Java is single threaded 4.0.7 JCORBA is multi-
threaded.
Overview - EJB and ECO/Java 1-9

Migration Options
Table 1–3 Migration paths and associated chapters

Migration Path: Refer to:

OAS 4.0.7 JCORBA application to
OAS 4.0.8 ECO/Java application

Chapter 15, “Migrating JCORBA Appli-
cations to ECO/Java”

OAS 4.0.7 JCORBA application to
OAS 4.0.8 EJB application

Chapter 7, “Migrating to OAS 4.0.8 EJB
Applications”

OAS 4.0.7 EJB application to
OAS 4.0.8 EJB application

Chapter 7, “Migrating to OAS 4.0.8 EJB
Applications”

OAS 4.0.8 ECO/Java application to
OAS 4.0.8 EJB application

Chapter 7, “Migrating to OAS 4.0.8 EJB
Applications”
1-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Part I

Enterprise JavaBeans

Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Enterprise
2

Enterprise JavaBeans

Contents
■ The Enterprise JavaBeans Component Model

■ EJB Features Provided by Oracle Application Server

■ Client View of Enterprise Beans

■ Differences Between EJB Components and Web Applications

■ Tools and Development Process

■ Invoking PL/SQL Procedures

■ Development Flowchart

The Enterprise JavaBeans Component Model
Enterprise JavaBeans (EJB) is a component model introduced by JavaSoft that
enables developers to create custom component applications. These applications
consist of server-side beans developed by yourself or by third parties. The beans
provide the business logic in EJB applications.

The EJB model is flexible in that you can use different components from different
vendors. For example, you can use configuration and management software from
one company, bean containers from a second company, and business logic beans
from a third company that specializes in providing beans for just that purpose. Ora-
cle Application Server supplies the configuration and management software, bean
container, and server. You provide the business logic bean—whether you build it
yourself or acquire it from a third-party.

In Oracle Application Server, the EJB server and container infrastructure is imple-
mented on top of a CORBA environment. This means that Enterprise JavaBeans
 JavaBeans 2-1

EJB Features Provided by Oracle Application Server
themselves are CORBA objects and they can communicate with other CORBA
objects.

Your beans exists within an EJB application. You configure the beans and the appli-
cation within a deployment descriptor and deploy the descriptor within Oracle
Application Server. After deployment, you can change certain application-level
parameters. However, the bean configuration cannot be changed through the Ora-
cle Application Server Manager. Refer to Chapter 4, “Creating Deployment Files”
for information on deployment files and to the Administrator’s Guide for informa-
tion on configuration and deployment. Once deployed, the application server man-
ages the EJB application and all beans contained within the application.

EJB Features Provided by Oracle Application Server
The Enterprise JavaBeans 1.0 specification outlines six roles:

When you use the application server as the platform for deploying EJB applica-
tions, the application server performs the roles of server and container provider. It
also provides an environment to facilitate application assembly, deployment, and
system administration. You create your own Enterprise beans or you can get them
from third parties. When you install an EJB application, you provide a deployment
descriptor for each bean in the application. Each deployment descriptor is a serial-
ized instance of the javax.ejb.deployment.SessionDescriptor object and
provides information about beans (such as the transaction mode) and JNDI location.

Enterprise bean provider Provided by the user. Business logic to run under Ora-
cle Application Server EJB framework.

Application assembler Oracle Application Server allows for the grouping of
beans into applications with their own separate JNDI
name spaces. This facilitates managing large sites.

Deployer The application server is the platform on which the
Enterprise beans run. The application server reads and
implements the deployment descriptors of the beans.

EJB server and container
provider

The application server provides an EJB server process,
which runs the EJB containers and implements their
services.

System administrator The application server provides the Oracle Application
Server Manager, which is a set of HTML forms that
enables you to monitor and manage your applications.
2-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

EJB Features Provided by Oracle Application Server
Figure 2–1 shows how EJB component applications are deployed in Oracle Applica-
tion Server.

Figure 2–1 EJB Components in Oracle Application Server

In an EJB application, beans exist in application instances. The application instances
themselves exist in an EJB container, which provides runtime services such as lifecy-
cle control, transactions, security, and concurrency. The application server provides
these containers when you deploy and run EJB applications.

EJB servers contain EJB containers. In the application server, an EJB server corre-
sponds to a process and is managed like a cartridge process. An EJB server pro-
vides a JVM and Java packages needed by the EJB runtime and services such as
process and thread management, load balancing, and logging. It provides the
framework within which EJB applications run.

The RM Proxy in the application server provides CosNaming and authentication
for clients connecting to an application instance. Once a client is associated with an
application instance, communication between the client and application instance
occur through the EJB server.

Oracle Application Server

ORB

EJB Server Process (JVM)

RM

Application Instances

Proxy

EJB Container

Clients

Bean

Bean

Bean
Enterprise JavaBeans 2-3

Client View of Enterprise Beans
Limitations in the Current Release
For this release of Oracle Application Server 4.0, the EJB component has the follow-
ing limitations:

■ The javax.ejb.SessionSynchronization interface is not supported.

■ Entity beans and their primary keys are not supported—The Enterprise Java-
Beans specifications defines two types of beans: entity beans and session beans.
Entity beans, which are an optional feature for Enterprise JavaBeans 1.0, are not
supported by the current version of Oracle Application Server. The application
server supports session beans only.

■ Method overloading of remote methods is not available.

■ Security model is not EJB 1.0 compliant.

■ IIOP mapping does not comply with the standardized mapping of Java RMI/
IIOP as defined by JavaSoft.

Client View of Enterprise Beans
EJB provides two interfaces for the client: a home interface and a remote interface.
The EJB remote interface should not be confused with the RMI Remote interface.
All further references to the remote interface is to the EJB remote interface, which
extends the RMI Remote interface.

■ Home interface: The client utilizes the home interface to locate and create an
instance of the bean.

The client locates the home interface through the Java Naming and Directory
Interface (JNDI). An application’s JNDI name space is represented in the Java
Virtual Machine (JVM). When a client traverses the JNDI name space of an
application, an application instance is automatically associated with the client.
This application instance contains the entire name space for the application and
is used for locating all home interfaces of objects in the application.

The client creates an instance of the bean using a create() method in the
home interface.

■ Remote interface: The client accesses the methods in the bean through the
bean’s remote interface. This interface is implemented by an EJB object, which is
created when the bean is deployed in the container.
2-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Differences Between EJB Components and Web Applications
Figure 2–2 EJB Architecture

Differences Between EJB Components and Web Applications
There are significant differences between EJB component applications and other
applications in the application server environment.

Transport Protocol
IIOP (Internet Inter-ORB Protocol) 2.0 is the transport protocol used between:

■ clients and EJB applications

■ beans running on different Java Virtual Machines

Traditional web applications use HTTP for their transport protocol. IIOP (Internet
Inter-ORB Protocol) is a CORBA transport protocol specified by the OMG (Object
Management Group, http://www.omg.org).

When you create your clients and applications, the application server generates for
you infrastructure code (such as stubs and skeletons) to support the CORBA/IIOP
architecture. CORBA/IIOP allows clients direct connection to beans. After the ini-
tialization process, client requests and application responses are not mediated
through the application server.

EJB Home

EJB Remote

EJB Server

Client

EJB Container

Bean

Bean

Bean

EJB Home

EJB Remote

EJB Home

EJB Remote
Enterprise JavaBeans 2-5

Tools and Development Process
Clients
Clients of EJB applications can be Java applets, traditional stand-alone Java clients
of distributed applications, or beans in the same or different application. They can-
not be HTTP-based browsers or non-Java clients.

For browsers, you cannot enter a URL in a browser to access an EJB application.
Rather, applets running within browsers can be the clients of EJB applications.
When you invoke web-based applications from the browser, the application exe-
cutes and returns an HTML page to the browser using HTTP. The browser then
interprets and renders the HTML.

Tools and Development Process
To develop the beans for EJB applications, you can use any Java development envi-
ronment that supports Java 1.1.6 or later. For example, you can use Oracle JDevel-
oper, or the JDK from Sun Microsystems. One advantage of using Oracle
JDeveloper is that it provides local debugging capabilities for EJB.

You also need the JAR utility to package the application. JAR comes with JDK from
Sun. If you are not using an IDE that allows you to serialize objects, you can use the
eco2ejb utility provided by the application server to generate serialized descriptors.

Invoking PL/SQL Procedures
To enable Java applications to invoke PL/SQL procedures and functions, you can
use pl2java, a utility that generates Java wrapper classes for PL/SQL procedures.

Before using pl2java, you must add the following to your application’s environ-
ment variables:

See Developer’s Guide: JServlet Applications for more information on the pl2java util-
ity.

See the Administration Guide for information on updating an application’s environ-
ment variables.

Table 2–1 Environment variables required to invoke pl2java

Name Value

LD_LIBRARY_PATH (Unix only) $ORACLE_HOME/cartx/jweb/lib

PATH (Windows NT only) $ORACLE_HOME/cartx/jweb/lib
2-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Development Flowchart
Development Flowchart
The flowchart below depicts the overall steps you need to perform to create an EJB
application and its client.

Figure 2–3 Development process flowchart

Create EJB Component—See Chapter 3
To create the EJB component, you must do the following steps.

Create EJB

Create Support

Create Remote

Compile

Create Deployment

and Home
Interfaces

Classes

Classes

Descriptors and
Manifest File

Create Application
JAR File

Deploy EJB
Application

Create Client
Application

Create Client
JAR File

Run Client

Implementation
Enterprise JavaBeans 2-7

Development Flowchart
1. Create EJB Implementation

2. Create EJB remote and home interfaces

3. Create support classes, like exceptions, data structures, etc.

Compile and Deploy your EJB Component—See Chapter 4
Once you have created the EJB component, you must do the following steps:

4. Compile classes

5. Create the manifest file and deployment descriptors for each bean and the
application

6. Create the application JAR file

7. Deploy the EJB application within the application server

Create Client—See Chapter 5
8. Create the client application

9. Create the client JAR file

10. Run client
2-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating Enterprise B
3

Creating Enterprise Beans

The Enterprise JavaBeans 1.0 specification defines session and entity beans. For this
release of Oracle Application Server, only session beans are supported. In addition,
the application server currently does not support the javax.ejb.SessionSyn-
chronization interface. A bean can implement the methods in the interface, but
the container will not call them.

This chapter focuses on creating and using session beans.

Contents
■ Steps for Creating Session Beans

■ Client Interfaces

■ Creating the Session Bean Class

■ Invoking Session Beans Remotely

■ Stateful and Stateless Session Beans

■ Object By Value Restrictions

Steps for Creating Session Beans
To create a session bean, perform the following steps:

1. Create a remote interface for the bean. The remote interface declares the meth-
ods that a client can invoke and must extend javax.ejb.EJBObject .

2. Create a home interface for the bean. The home interface must extend
javax.ejb.EJBHome . In addition, it defines the create method for your
bean.
eans 3-1

Client Interfaces
3. Create a session bean class that implements your functionality. This includes
the following methods:

a. The implementation for the methods declared in your remote interface.

b. The methods defined in the javax.ejb.SessionBean interface.

c. The ejbCreate method with parameters matching those of the create
method defined of the home interface.

4. Create the relevant deployment descriptors:

a. A deployment descriptor is required for each bean. The deployment
descriptor specifies properties for the bean that you can modify after you
deploy the bean. This enables you to customize the bean without recompil-
ing it. See Chapter 4, “Creating Deployment Files”.

b. The deployment descriptor for the application contains general informa-
tion about your application and default values for all beans in your applica-
tion. See Chapter 4, “Creating Deployment Files”.

5. Create a manifest file for the application. The manifest file provides administra-
tive information such as the name of the bean and the name of the deployment
descriptor. See Chapter 4, “Creating Deployment Files”.

6. Create an ejb-jar file containing the session bean, the remote and home inter-
faces, the deployment descriptors, and the manifest file. The ejb-jar file must
define all beans within your application. Refer to Chapter 4, “Creating Deploy-
ment Files” for more details.

Client Interfaces
An Enterprise session bean has two client interfaces: a remote interface and a home
interface. The remote interface specifies the methods that the object’s clients can
invoke; the home interface defines how clients can create the object, which returns
a reference to the object. Both interfaces have the same restrictions.

■ Requirements for Remote and Home Interface Implementation

■ Creating the Remote Interface

■ Creating the Home Interface

Note: If the enterprise bean you create accesses another bean, see
the section “Getting the Object Reference for a Bean” on page 5-2
for information on looking up beans from another bean.
3-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Client Interfaces
■ Creating the Exception Class

Requirements for Remote and Home Interface Implementation

Creating the Remote Interface
The remote interface of a bean provides an interface for clients to access methods in
that bean. The remote interface defines the methods that you implement for remote
access.

Requirement Description

RMI conformance Because the javax.ejb.EJBObject and
javax.ejb.EJBHome interfaces extend
java.rmi.Remote , they must be compliant with the
Remote Method Invocation (RMI) specification. This
means that their methods can only use the data types
allowed in RMI, and that methods in both interfaces must
throw the java.rmi.RemoteException exception.

You can get the RMI specifications from the JavaSoft site,
http://www.javasoft.com.

Naming conventions The interface names, method names, and constants defined
within these interfaces cannot start with an underbar (_) or
contain a dollar sign ($). In addition, the application and
bean names can include the slash sign (/).

Method overloading Interfaces do not support method overloading. The actual
bean implementation that extends SessionBean , since it
is a local class (not to be used as a remote bean), can over-
load its methods. The primary consequence for this is that
the home interface will only support a single create
method for the bean.

Primary key Primary keys are used for entity beans. Since Oracle Appli-
cation Server does not currently support entity beans, any
method that requires a primary key, such as the
remove(Object) method within the home interface, is
not supported.

Object by value
limitations

Objects are passed by value on a parameter by parameter
basis. See “Object By Value Restrictions” on page 3-17 for
more information.
Creating Enterprise Beans 3-3

Client Interfaces
The bean’s remote interface must extend the javax.ejb.EJBObject interface,
which has the following definition:

public interface javax.ejb.EJBObject extends java.rmi.Remote {
public abstract EJBHome getEJBHome(); // returns reference to home interface

// for this bean
public abstract Handle getHandle(); // returns serializeable handle to bean
public abstract Object getPrimaryKey(); // not supported

// (used for entity beans only
public abstract boolean isIdentical(EJBObject obj);
public abstract void remove(); //remove the EJB object

}

You do not need to implement the methods in the EJBObject interface; these
methods are implemented for you by the container.

Function Description

getEJBHome() Retrieves the object reference for the home interface
associated with this particular bean.

getHandle() A serializable Java representation of the EJB object reference
can be obtained using the getHandle method of the
remote interface. The handle can be serialized and used to
re-establish a connection to the same object—as long as the
bean instance is still active. You use the getEJBObject
method within the Handle class to retrieve the bean
instance.

getPrimaryKey() The getPrimaryKey method is defined for the future sup-
port on EJB EntityBeans. Not supported in this release.

isIdentical() Tests that the object calling this method and the object in the
argument are identical (as far as the container is concerned).
This identifies that both objects are the same for all pur-
poses.

remove() Deactivates the EJB bean. This, in turn, destroys the session
bean instance (if stateful).
3-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Client Interfaces
Example
The following code sample shows a remote interface called ServerStackRemote,
which declares four methods (implemented in the bean): getStackSize, setStackSize,
push, and pop.

package myStack;

public interface ServerStackRemote extends javax.ejb.EJBObject {
public int getStackSize () throws java.rmi.RemoteException;
public void setStackSize (int size) throws StackException,

java.rmi.RemoteException;
public void push (String value) throws StackException,

 java.rmi.RemoteException;
public String pop() throws StackException,

 java.rmi.RemoteException;
}

Creating the Home Interface
Clients use the Enterprise bean’s home interface primarily to create instances of the
bean. A bean’s home interface can also be used to retrieve metadata information
about the bean through the javax.ejb.EJBMetaData interface or remove the
bean instance, given a handle.

The home interface must extend the javax.ejb.EJBHome interface which has the
following definition:

public interface javax.ejb.EJBHome extends java.rmi.Remote {
public abstract EJBMetaData getEJBMetaData();
public abstract void remove(Handle handle);

}

The methods in the EJBHome interface are implemented by the container. A client
can remove an EJB object using either of the remove methods defined in its home
or remote interfaces.

Creating an EJB Object
The home interface should define the appropriate create method for your bean.
The client invokes the create method declared within the home interface. The con-
tainer turns around and calls the ejbCreate method, with the appropriate param-
Creating Enterprise Beans 3-5

Client Interfaces
eter signature, within your bean implementation. The parameter arguments can be
used to initialize the state of a new EJB object.

Example
The following code sample shows a home interface called ServerStackHome. The
create method contains no arguments as it is a stateless session bean.

package myStack;

public interface ServerStackHome extends javax.ejb.EJBHome {
public ServerStackRemote create ()

throws javax.ejb.CreateException, java.rmi.RemoteException;
}

Creating the Exception Class
Some methods in the ServerStack class can throw the StackException exception. For
an exception to be transported from the object to the client, you need to define a
class for the exception.

The following code defines an exception class and is found in StackException.java.

package myStack;

public final class StackException extends Exception
{
 public StackException()
 {
 }
}

Note: Because of the application server’s restriction on no
method overloading, you cannot have multiple create methods
with multiple signatures.

The allowed signature on your create method depends on
whether your bean is stateless or stateful. A stateless bean cannot
provide any parameters upon initialization. See “Stateful and State-
less Session Beans” on page 3-14 for more information.
3-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating the Session Bean Class
Creating the Session Bean Class
The session bean contains the business logic for your bean. It implements the fol-
lowing methods:

■ The bean methods declared in the remote interface.

The bean in the application consists of one class, ServerStack, that implements
a simple last-in-first-out stack where you can place and retrieve values. The
class has four public methods:

* setStackSize() sets the number of values the stack can hold.

* getStackSize() returns the number of values the stack can hold.

* push() places a value on the stack.

* pop() returns a value from the stack.

■ The methods declared in the SessionBean interface.

■ The ejbCreate method that corresponds to the create method declared in
the home interface. The container invokes the ejbCreate method when the
client invokes the corresponding create method.

Interface Implemented
The session bean implements the javax.ejb.SessionBean interface, which has
the following definition:

public interface javax.ejb.SessionBean extends javax.ejb.EnterpriseBean {
public abstract void ejbActivate();
public abstract void ejbPassivate();
public abstract void ejbRemove();
public abstract void setSessionContext(SessionContext ctx);

}

Note: The ejbActivate and ejbPassivate methods are cur-
rently not invoked by the Container. However, you are still
required to at least implement an empty method for both of them.
In addition, you may consider implementing these methods as if
they were called, so that when these methods are supported in a
future release, you do not have to go back and touch your EJB
applications.
Creating Enterprise Beans 3-7

Creating the Session Bean Class
Using ejbPassivate
A session bean can be set by its container to a passive state when it enters a period
of inactivity. Setting it to a passive state involves the temporary transfer of the ses-
sion bean’s state to secondary storage. This process is known as passivation.

Before the container can passivate a bean, you must do two things within ejbPas-
sivate :

■ ensure that the bean is serializable—you need to ensure that the state of a ses-
sion bean instance is serializable. The instance may be destroyed by the con-
tainer if the instance’s state is not serializable. This requires that any known
non-serializable attribute of the bean must be declared transient or set to null.

■ close all open resources—you should close any open resources before passiva-
tion. For example, all database connections or open file handles must be closed
before the bean is passivated, because they cannot be serialized. In addition,
you may release large data structures within ejbPassivate that you can eas-
ily reconstruct within ejbActivate . The container takes care of actually passi-
vating the bean.

Using ejbActivate
The process of reconstructing a passivated session bean to an active state is called
activation. The ejbActivate method allows you to perform tasks necessary to
reconstruct a session bean instance’s state. This may include opening database con-
nections, opening appropriate file handles, and reconstructing any data structures
discarded during ejbPassivate . The container will load the serialized instance
state before ejbActivate is invoked.

Using ejbRemove
A container calls the ejbRemove method before it removes a bean object from the
container. This method is typically used for performing any clean-up you would
like performed before the bean is destroyed. This may include things like closing
database connections or other resources.

Using setSessionContext
This method is used by a session bean instance to retain a reference to it’s context.
Session beans have session contexts that the container maintains and makes avail-
able to the beans. The bean may use the methods in the session context to make call-
back requests to the container.

The container invokes setSessionContext method, after it first instantiates the
bean, to enable the bean to retrieve the session context. The container will never
3-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating the Session Bean Class
call this method from within a transaction context. If the bean does not save the ses-
sion context at this point, the bean will never gain access to the session context.

When the container calls this method, it passes the reference of the SessionContext
object to the bean. The bean can then store the reference for later use. The following
example shows the bean saving the session context in the sessctx variable.

import javax.ejb.*;
import oracle.oas.ejb.*;

public class myBean {
SessionContext sessctx;

void setSessionContext(SessionContext ctx) {
sessctx = ctx; // session context is stored in

// instance variable
}
// other methods in the bean

}

The javax.ejb.SessionContext interface has the following definition:

public interface SessionContext extends javax.ejb.EJBContext {
 public abstract EJBObject getEJBObject();
}

And the javax.ejb.EJBContext interface has the following definition:

public interface EJBContext {
 public abstract Properties getEnvironment();
 public abstract UserTransaction getUserTransaction();
 public abstract boolean getRollbackOnly();
 public abstract void setRollbackOnly();
 public abstract boolean isCallerInRole(Identity);

// not supported
 public abstract Identity getCallerIdentity(); // not supported
 public abstract EJBHome getEJBHome();
}

A bean needs the session context when it wants to perform the operations listed in
Table 3–1.
Creating Enterprise Beans 3-9

Creating the Session Bean Class
Session Bean Example
The following code implements methods of a session bean called ServerStack.

The example uses the application server’s Logger service, which is accessed
through JNDI with the "oas_service:logger" URL. The returned object is of
class oracle.oas.ejb.Logger . It can be used to log messages using the applica-
tion server infrastructure.

package myStack;
import javax.ejb.*;
import oracle.oas.ejb.*;
import java.util.Properties;
import javax.naming.*;

public class ServerStack implements javax.ejb.SessionBean
{
 private int stackSize = 0;
 private String stackElements[];
 private int top = -1;
 private SessionContext osc = null;
 private Logger logger = null;

 //implement the methods from SessionBean: ejbActivate, ejbPassivate,
 //ejbRemove, and setSessionContext.

Table 3–1 SessionContext operations

Method Description

getEnvironment() Get the values of properties for the bean.

getUserTransaction() Get a transaction context, which allows you to demarcate
transactions programmatically. This is only valid for beans
that have been designated transactional with
TX_BEAN_MANAGED.

setRollbackOnly() Set the current transaction so that it cannot be committed.

getRollbackOnly() Check whether the current transaction has been marked for
rollback only.

getEJBHome() Get the object reference to the bean’s corresponding EJB-
Home (home interface).
3-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating the Session Bean Class
 //retrieve the session context for future information needs about
 //the bean.
 public void setSessionContext (SessionContext ctx)
 {
 //save the session context for any future information needs
 osc = ctx;
 }

 //implement ejbCreate, which is called by the container when the
 //Home create is invoked by the client.
 public void ejbCreate () throws CreateException
 {
 //initialize the logger and the environment properties.
 try
 {
 Context ctx = new InitialContext();
 logger = (oracle.oas.ejb.Logger) ctx.lookup ("oas_service:logger");
 logger.setSeverity (oracle.oas.ejb.Logger.LOG_SEVERITY_DEBUG);

 Properties env = osc.getEnvironment();
 setStackSize(Integer.parseInt(env.getProperty("initialStackSize")));
 }
 catch (Exception e)
 {
 e.printStackTrace (System.out);
 throw new CreateException (e.getMessage());
 }
 }

 //implement the activation routine. anything that needs to be
 //done to the bean upon activation should be included here.
 public void ejbActivate () { }

 //implement anything that needs to be done before the
 //bean is passivated. this would include closing any open
 //resources. however, for this example, no open resources need
 //to be closed. thus, the method is empty.
 public void ejbPassivate () { }

 //implement anything that needs to be done before the
 //bean is destroyed. this would include closing any open
 //resources. however, for this example, no open resources need
 //to be closed. thus, the method is empty.
 public void ejbRemove () { }
Creating Enterprise Beans 3-11

Creating the Session Bean Class
 //implement the methods for the bean: getStackSize, setStackSize, push
 //and pop.

 //getStackSize retrieves the size set for the stack that was set either
 //within ejbCreate or reset within setStackSize.
 public int getStackSize ()
 {
 logger.println(" Getting stack size...");
 return stackSize;
 }

 //resets the stack size to a new value.
 public void setStackSize (int size) throws StackException
 {
 if (size < 0)
 throw new StackException();
 logger.println(" Setting stack size to " + size + "...");
 top = -1;
 stackSize = size;
 stackElements = new String[size];
 }

 //push a value on to the stack
 public void push (String value) throws StackException
 {
 if (top == stackSize - 1)
 throw new StackException();
 logger.println(" Pushing \"" + value + "\" onto the stack...");
 stackElements[++top] = value;
 }

 //pop a value off of the stack
 public String pop () throws StackException
 {
 if (top == -1)
 throw new StackException();
 logger.println(" Popping the stack (returning element " +
 stackElements[top] + ")...");
 return stackElements[top--];
 }

}

3-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Invoking Session Beans Remotely
Invoking Session Beans Remotely
Remote method invocations to session beans must be serialized. At any time, only
one invocation can be made through the remote interface of a particular session
bean. If a different client or thread makes an invocation while the first is executing,
an exception is thrown on the second invocation. This applies to session beans of
all kinds. In the EJB framework, clients must be designed to invoke methods on
remote interfaces sequentially.

The events that occur when a client accesses a session bean are explained in the fol-
lowing diagram and steps:

Figure 3–1 Sequence of events in a session bean lifecycle

The numbers in the figure correspond to the following numbered steps:

1. Client 1 looks up home interface of bean X.

2. Reference to home interface X is returned to client 1.

3. Client 1 invokes create on home interface X.

4. Home interface X instantiates remote interface X. The container does one of the
following:

a. If the bean is stateful, the bean is instantiated for this client and is
destroyed only when the client invokes the remove.

b. If the bean is stateless, the container gives a bean instance from a bean pool
to service the client. The client has sole access to this bean instance until it

Client 1

Container

Bean X

ref to remote

home
interface X

remote
interface X

lookup (1)

ref to home
 interface X (2)

create() (3)

(4) (6)

methods (5)

remove (7)

interface X (4)
Creating Enterprise Beans 3-13

Stateful and Stateless Session Beans
invokes the remove. When the remove is invoked, the bean is returned to
the bean pool for the next client request.

The object reference of remote interface X is returned to client 1.

5. Client 1 uses remote interface X to invoke methods on bean instance X.

6. Remote interface X delegates call to a bean.

7. Client 1 invokes remove on remote interface X when it is done with the bean
instance. This destroys the remote interface, and possibly the bean instance (if
stateful).

Stateful and Stateless Session Beans
Session beans are either stateful or stateless.

■ A stateful bean exists for a single client. It carries a "state" that is relevant only
for the particular client. A bean is instantiated for every remote interface
instance held by a client.

■ A stateless bean does not carry any state and thus, can service multiple clients.
The number of beans instantiated depends on the number of concurrent
method invocations occurring at a given time interval.

Stateful Session Bean
A stateful session bean carries a state—or data—that is pertinent to the client that cre-
ated the bean instance. Thus, the stateful bean exists only for the client that created
it. Thus, it exists for the duration of the lifespan of the remote interface that is used
by a client to access the bean.

When the remote interface is created through the create method in the home
interface, the stateful session bean is instantiated and initialized. When the remove
method in the remote or home interface is invoked, the bean instance is destroyed
with the remote interface. The ejbCreate and ejbRemove methods in the stateful
session bean are invoked with create and remove respectively.

Note: See “Stateful and Stateless Session Beans” on page 3-14 for
more information on stateless and stateful beans.
3-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Stateful and Stateless Session Beans
Figure 3–2 Stateful session beans

Consider Figure 3–2:

■ Client 1 looks up a home interface instance for bean X and obtains an object ref-
erence to home interface X1. It uses this reference to invoke create in the
home interface and remote interface X1 is instantiated. Bean instance X1 is
instantiated along with the remote interface.

■ Client 2 looks up a home interface instance for bean X and gets an object refer-
ence to home interface X2. It invokes create in the home interface and remote
interface X2 is instantiated and so is bean instance X2.

When Client 1 invokes methods on remote interface X1, the invocations are trans-
lated to bean instance X1. When Client 2 invokes methods on remote interface X2,
the invocations are translated to bean instance X2. The remote interfaces and their
corresponding bean instances have a one-to-one relationship. When a client
invokes remove on its corresponding remote interface, both the remote interface
and associated bean instance are destroyed.

Stateless Session Bean
A stateless session bean has a lifespan independent of any remote interface. Stateless
session beans do not carry any state—or data—for a specific client. Thus, a stateless
session bean can exist for more than one remote interface. When a method is
invoked in a remote interface, the container selects a bean instance existing in a
bean pool to service the request, or, if necessary, the container creates a new
instance to handle the request. Once a bean instance is selected to process the
method invocation, it belongs exclusively to the remote interface that made the
invocation for the duration of the invocation.

Client 1

Container

Bean X1
home

Client 2
create()

interface X1

remote
interface X1

Bean X2
home
interface X2

remote
interface X2

Different instances

create()

tied to unique
remote interfaces.
Creating Enterprise Beans 3-15

Stateful and Stateless Session Beans
Figure 3–3 Stateless session beans

Consider Figure 3–3:

■ Client 1 looks up a home interface instance for bean X and obtains an object ref-
erence to home interface X1. It uses this reference to invoke create in the
home interface and remote interface X1 is instantiated. When Client 1 makes a
method invocation on remote interface X1, the container instantiates bean
instance Xa and delegates the invocation to instance Xa. At this time, bean
instance Xa can service only the request coming from remote interface X1.

■ Client 2 makes a method invocation on remote interface X2, bean instance Xa
cannot service the request and a new bean instance, Xb, is created to service the
request. If the invocation on remote interface X1 completes before Client 2
makes its invocation, bean instance Xa would have been released into the bean
pool and would be ready to answer the request from remote interface X2
(assuming the container, which manages the bean pool, does not decide to
destroy bean instance Xa in the meantime).

Setting the State
To specify a session bean as stateless or stateful, use the setStateManagement-
Type method in the bean-level descriptor class javax.ejb.deployment.Ses-
sionDescriptor . This method takes in either “STATEFUL_SESSION” or
“STATELESS_SESSION” as the argument. Refer to “Bean-Level Deployment
Descriptors” on page 4-7 for more information.

Client 1

Container

Bean Xa

home

Client 2
create()

interface X1

remote
interface X1

Bean Xb

home
interface X2

remote
interface X2

Different instances

create()

not tied to a
particular remote
interface.

Bean
Pool
3-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Object By Value Restrictions
Object By Value Restrictions
In RMI, if you pass the same object more than once within the arguments for a
method, the received parameters will each reference the same object instance. For
Oracle Application Server, the received parameters will reference separate object
instances. The following gives an example of how Oracle Application Server passes
objects, if requested more than once.

Example 3–1 Passing an Object Several Times

The following example declares two methods: method1 and method2, where
method1 passes three objects as arguments and method2 passes an array of objects
as its argument. Oracle Application Server returns the following:

■ method1—Oracle Application Server takes in the three arguments, note that
they are the same object (str), and returns three separate object instances of the
same implementation.

■ method2—Oracle Application Server takes in the single argument and passes
back the array where each element in the array points to the same object
instance.

Oracle Application Server diverts from the RMI specification on passing objects by
value only in the case where the same object is passed as an argument more than
once within the method invocation.

public interface ServerRemote extends oracle.oas.ejb.EJBObject
{
 //declare the two methods with different argument signatures
 public method1(String, String, String);
 public method2(String[]);
}

public class Server implements SessionBean {
 //declare a single string to pass within method1 and
 //to initialize the String[].
 private String str = "strOne";

 //declare the String array for method2 and populate it with String str.
 private String serverElements[] = new String[] {str, str, str};

 //invoke both methods with its own signature.
 method1(str, str, str);
 method2(serverElements);
}

Creating Enterprise Beans 3-17

Object By Value Restrictions
3-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating Deplo
4

Creating Deployment Files

After you have created your beans, you need to create deployment descriptors, a
manifest file, and package them in a JAR file along with the class files for your
beans. This chapter describes how to create the deployment descriptors, the mani-
fest file, and the JAR file. In addition, it discusses how to install your JAR file,
improve your application’s performance, and debug your application.

Contents
■ Deployment Descriptors

■ Manifest File

■ Creating the JAR File for Installation

■ Deploying Your EJB Application

■ Configuring the EJB Application

■ Re-deploying and Reloading Applications

■ Improving Performance

■ Debugging EJB Applications

Deployment Descriptors
A deployment descriptor is a serialized object that provides information about the
application or about the bean. For an EJB application, you need two types of
deployment descriptors:

■ one deployment descriptor for each bean in the application

At the bean level, it provides information such as the class name of the bean,
the JNDI name for the bean, the class name of the bean’s remote and home
yment Files 4-1

Deployment Descriptors
interfaces, whether a bean is stateful or stateless, a list of name-value pairs that
are used by the bean, and the transaction mode for the bean.

■ one deployment descriptor for the application as a whole (this is specific to Ora-
cle Application Server and not specified in the Enterprise JavaBeans specifica-
tions). This descriptor is optional.

At the application level, it provides information such as the name of the appli-
cation and global transaction and tuning information for all beans in the appli-
cation.

After you have installed the application, you can use the Oracle Application Server
Manager to change some of the information provided in the deployment descrip-
tors. Note that the names of the application and all its objects cannot be changed
without re-installing the application.

Creating Deployment Descriptors
The EJB specification requires that the descriptors be in the form of serialized Java-
Beans of particular predefined classes. Since this version of Oracle Application
Server only supports session beans, the descriptor is a serialized instance of
javax.ejb.deployment.SessionDescriptor object.

Most IDEs, including Oracle’s JDeveloper, provide ways to instantiate and serialize
such objects. If you do not have such a tool, you have the following two options to
create the descriptors:

■ Using the eco2ejb utility to convert a text file to the serialized SessionDescriptor
objects

■ Writing a Java Application to populate and serialize the SessionDescriptor
objects for the application and each bean.

Using the eco2ejb utility
The eco2ejb utility is supplied with the application server for users who want to
migrate their ECO/Java applications to EJB applications. But you can also use it to
generate serialized descriptors from a text file.

Note: If you decide to not do the deployment descriptor for the
application, the application name must be entered either when
deploying through the GUI or you must provide the -a
<application_name> option on the oasdeploy command.
4-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Deployment Descriptors
The eco2ejb utility takes a file named ECO.APP that contains meta information for-
matted for ECO/Java applications. This meta information is converted to serialized
descriptors for the application and for the beans in the application. The eco2ejb util-
ity can be given an input file of any name as long as it has the same format and con-
tent structure as a typical ECO.APP file. See “Structure of the Deployment
Information File” on page 12-2 in the ECO/Java Part for information on creating
your ECO.APP file.

The following shows the structure of an ECO.APP file:

[APPLICATION]
name=<application name>

[<application name> .ENV]
<application_property> =<value>

[<EJB object name>]
className= <name of object class>
remoteInterface= <name of remote interface>
homeInterface= <name of home interface>

[<EJB object name> .ENV]
<object property>=<value>

After you create this file and enter the appropriate names pertaining to your EJB
application, run the eco2ejb command in the same directory as the file as follows:

eco2ejb <filename> [<application_classpath>]

The <application_classpath> argument is optional. It should be used when the
ECO.APP file specifies method-level transaction attributes. For example:

[Bean1]
...
transactionMode_setStrVal=TX_REQUIRES_NEW
transactionMode_getStrVal=TX_REQUIRED

where setStrVal and getStrVal are methods of Bean1. The second argument is
used to load bean implementation classes in order to extract method objects from
that class. The method objects will be used to produce javax.ejb.ControlDe-
scriptor objects that will go into the serialized bean descriptor.

The utility creates several files: a MANIFEST.MF file, a deployment descriptor file
for your application, and one deployment descriptor file for each bean.
Creating Deployment Files 4-3

Deployment Descriptors
As an example, use the ECO.APP file, whose contents should look like:

[APPLICATION]
name=myStack

[ServerStack]
className=myStack.ServerStack
remoteInterface=myStack.ServerStackRemote
homeInterface=myStack.ServerStackHome

[ServerStack.ENV]
initialStackSize=20

After running eco2ejb with the above file as input, the following files are created:

■ MANIFEST.MF

■ ServerStackDeployment.ser

■ myStackDeployment.ser

The contents of MANIFEST.MF reflects the typical structure of an EJB manifest file:

Manifest-Version: 1.0

Name: myStackDeployment.ser
OAS-Application: True
Application-Name: myStack

Name: ServerStackDeployment.ser
Enterprise-Bean: True
Bean-Name: ServerStack

Writing a Java Application
Your Java application must create descriptor objects, one for your EJB application
and one for each bean.

1. Methods on each descriptor object are invoked to set properties for your EJB
application and beans.

2. For each descriptor, create output file objects to contain each descriptor.

Note: More information will be added to the MANIFEST.MF file
when a deployment JAR file is created for your bean. For more
information about the EJB manifest file, see “Manifest File” on
page 4-12.
4-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Deployment Descriptors
3. Serialize each descriptor and write it to its output file. You should write each
descriptor object into the file using ObjectOutputStream() . The extension
of the serialized file should be ".ser".

Application-Level Deployment Descriptors Application-level descriptors contain infor-
mation about the application (such as the application name) and default values
available to all beans in the application. The application-level deployment descrip-
tor is the oracle.oas.ejb.deployment.OASApplicationDescriptor class.
This class extends the javax.ejb.deployment.SessionDescriptor class,
which extends the javax.ejb.deployment.DeploymentDescriptor class.

This class is Oracle’s extension of the EJB 1.0 specification. It is not required that
your application’s JAR file contain an OASApplicationDescriptor object.
Therefore, you can use standard EJB JAR files, which were not created specifically
for Oracle Application Server, and deploy them as Oracle Application Server appli-
cations without modification. In this case, you will be required to provide a name
for your application when you deploy such a JAR file. If you choose to include an
OASApplicationDescriptor object in your application JAR, you can take
advantage of the ability to set many default parameters during the deployment pro-
cess, some of which cannot be set otherwise.

The most commonly used methods come from both OASApplicationDescrip-
tor and DeploymentDescriptor . The following defines the OASApplication-
Descriptor methods, which are Oracle-specific methods for Oracle Application
Server applications.

public class oracle.oas.ejb.deployment. OASApplicationDescriptor
extends javax.ejb.deployment.SessionDescriptor {

public boolean getTxEnabled();
public boolean isTxEnabled();
public void setTxEnabled(boolean val);

public String getTxDads();
public void setTxDads(String dads);

public Name[] getOtherApplications();
public void setOtherApplications(Name[] otherApps);

public int getMinInstances();
public void setMinInstances(int val);

public int getMaxInstances();
public void setMaxInstances(int val);
Creating Deployment Files 4-5

Deployment Descriptors
public String getAuthenticationString();
public void setAuthenticationString(String authStr);

}

You use methods in OASApplicationDescriptor (and classes that it inherits
from) to specify default values for beans in the application. These default values
can be overridden by the deployment descriptor for the individual beans. The fol-
lowing describes the frequently used methods in setting up your application’s
deployment descriptor. In addition, it lists whether you can change the value after
deployment through the Oracle Application Server Manager GUI.

Table 4–1 Application descriptor methods

Method Definition Field

setBeanHomeName() Specify the name for the
application

Not modifiable in Oracle
Application Server Manager.

setTxEnabled() Specify if the application is
transaction enabled or not.

Not modifiable in Oracle
Application Server Manager.

setTxDads() Define the databases that
are to be used in any trans-
action.

Transactional DADs in
Transaction Property form

setOtherApplications() Identify any related applica-
tions that may be called
from this application.

Not modifiable in Oracle
Application Server Manager.

setMinInstances() Set the minimum number
of application instances to
prestart by OAS for each
application process.

Minimum # of Instances in
Tuning form

setMaxInstances() Set the maximum number
of application instances to
allow in a process.

Maximum # of Instances in
Tuning form

setAuthenticationString() Set the authentication
string that identifies what
type of security this applica-
tion requires.

Authentication String in
Security form

Note: The Priority and the Min/Max Server parameters can only
be set through the GUI.
4-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Deployment Descriptors
Bean-Level Deployment Descriptors The javax.ejb.deployment.SessionDe-
scriptor class implements bean-level deployment descriptors. In addition, you
can add information within javax.ejb.deployment.ControlDescriptor
object, which defines whether the bean supports transactions. The
javax.ejb.deployment.AccessControlEntries object is not supported.

Multiple ControlDescriptor objects can be created, set within an array, and
added to the SessionDescriptor .

The methods that you can use for bean-level descriptors are listed in Table 4–2.

Table 4–2 Bean descriptor methods and their corresponding fields in Oracle Applica-
tion Server Manager

Class/Method Description Field

DeploymentDescriptor/set-
EnterpriseBeanClassName()

Define the bean’s class Not modifiable in Oracle
Application Server Manager.

DeploymentDescriptor/
setBeanHomeName()

Define the bean’s name Not modifiable in Oracle
Application Server Manager.

DeploymentDescriptor/set-
HomeInterfaceClassName()

Define the name for the
home interface

Not modifiable in Oracle
Application Server Manager.

DeploymentDescriptor/
setRemoteInterfaceClass-
Name()

Define the name for the
remote interface

Not modifiable in Oracle
Application Server Manager.

DeploymentDescriptor/
setEnvironmentProperties()

Set the environment
properties for the bean.

Java Environment form.

SessionDescriptor/
setSessionTimeout()

Set the timeout value for
the bean

Timeout in Object Parameters
(Bean Parameters) form.

SessionDescriptor/
setStateManagementType()

Set whether the bean is
stateful or stateless

Not modifiable in Oracle
Application Server Manager.

DeploymentDescriptor/
setReentrant()

Define if the bean is
reentrant

n/a

ControlDescriptor/
setTransactionAttribute()

Declare if the bean is trans-
actional or not

Not modifiable in Oracle
Application Server Manager.

ControlDescriptor/
setMethod

Set method affected by the
ControlDescriptor. The
default is all methods.

Not modifiable in Oracle
Application Server Manager.
Creating Deployment Files 4-7

Deployment Descriptors
Note that the application descriptor class, OASApplicationDescriptor , is a sub-
class of javax.ejb.deployment.SessionDescriptor . This enables you to
define common values for your EJB objects at the application level and to override
the values for specific objects by calling the method at the object level.

Deployment Descriptor Example
The following code sample creates two descriptors:

■ application descriptor —The application descriptor is written out to a file
called StackDemoDeployment.ser.

■ bean descriptor— The bean descriptor is written out to a file called Server-
StackDeployment.ser.

package myStack;

import javax.ejb.deployment.*;
import oracle.oas.ejb.deployment.*;
import javax.naming.CompositeName;
import java.util.Properties;
import java.io.*;
import java.lang.reflect.*;

public class ServerStackDescriptor
{

public static void main(String[] args)
{

FileOutputStream fos;
ObjectOutputStream oos;

//Create the descriptors. The SessionDescriptor can contain
//ControlDescriptors and the OASApplicationDescriptor
//The OASApplicationDescriptor is Oracle-specific and used to

DeploymentDescriptor/
setControlDescriptors()

Set the array of the
ControlDescriptors within
the SessionDescriptor.

Not modifiable in Oracle
Application Server Manager.

DeploymentDescriptor/
setAccessControlEntries()

Set the array of the Access-
ControlEntries within the
SessionDescriptor

n/a

Table 4–2 Bean descriptor methods and their corresponding fields in Oracle Applica-
tion Server Manager

Class/Method Description Field
4-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Deployment Descriptors
//describe the application. The ControlDescriptor is used in
//describing the individual beans.

OASApplicationDescriptor ad = new OASApplicationDescriptor();
SessionDescriptor sd = new SessionDescriptor();
ControlDescriptor cd = new ControlDescriptor();
ControlDescriptor cdAll[] = new ControlDescriptor[1];

try
{

 //Set the application name-StackDemo-and general properties
 //such as whether the application is transaction enabled
 //and the maximum instances allowed.

ad.setBeanHomeName (new CompositeName("StackDemo"));
ad.setTxEnabled(false);
ad.setMaxInstances(7);

// create an output file object, write it to a file
// using ObjectOutputStream
fos = new FileOutputStream(" StackDemoDeployment.ser ");
oos = new ObjectOutputStream(fos);
oos.writeObject(ad);
oos.flush();

 //Create the session descriptor and Properties
 //for the ServerStack bean. Set the Property for
 //initial stack size for the ServerStack bean.

sd.setEnterpriseBeanClassName("myStack.ServerStack");
Properties p = new Properties();
p.put("initialStackSize", "20");

 //Set environment properties within the created Properties object
 //Designate the remote and home interface names and the bean name.

sd.setEnvironmentProperties(p);
sd.setRemoteInterfaceClassName("myStack.ServerStackRemote");

 sd.setHomeInterfaceClassName("myStack.ServerStackHome");
sd.setBeanHomeName(new CompositeName("ServerStack"));

 //The control descriptor for the bean defines whether the
 //bean is transaction enabled.

cd.setTransactionAttribute(ControlDescriptor.TX_NOT_SUPPORTED);

 //All control descriptors need to be declared within a single array
 //and then set within the SessionDescriptor for the bean.

cdAll[0] = cd;
sd.setControlDescriptors(cdAll);
Creating Deployment Files 4-9

Deployment Descriptors
 //Set the session timeout and whether the bean is stateful
 //or stateless.

sd.setSessionTimeout(401);
sd.setStateManagementType(sd.STATEFUL_SESSION);

 //Once all values for the descriptor are set... serialize the
 //SessionDescriptor (and its enclosed ControlDescriptors)
 //and write it out to a file.

fos = new FileOutputStream(" ServerStackDeployment.ser ");
oos = new ObjectOutputStream(fos);
oos.writeObject(sd);
oos.flush();

}
catch (Exception e)
{

e.printStackTrace();
System.exit(1);

}
}

}

Reference for Deployment Descriptor Classes
The following listings show the javax.ejb.deployment.SessionDescrip-
tor and javax.ejb.deployment.DeploymentDescriptor classes. Note from
the comments which methods the application server does not currently support.

javax.ejb.deployment.SessionDescriptor
public class javax.ejb.deployment.SessionDescriptor

extends javax.ejb.deployment.DeploymentDescriptor {
public final static int STATEFUL_SESSION;
public final static int STATELESS_SESSION;
public SessionDescriptor();

public int getStateManagementType();
public void setStateManagementType(int value);

public int getSessionTimeout();
public void setSessionTimeout(int value);

}

4-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Deployment Descriptors
javax.ejb.deployment.DeploymentDescriptor
public class javax.ejb.deployment.DeploymentDescriptor extends java.lang.Object

implements java.io.Serializable {
protected int versionNumber;

public DeploymentDescriptor();

public String getEnterpriseBeanClassName();
public void setEnterpriseBeanClassName(String value);

public Properties getEnvironmentProperties();
public void setEnvironmentProperties(Properties value);

 public String getHomeInterfaceClassName();
 public void setHomeInterfaceClassName(String value);

public String getRemoteInterfaceClassName();
public void setRemoteInterfaceClassName(String value);

public Name getBeanHomeName();
public void setBeanHomeName(Name value);

public ControlDescriptor[] getControlDescriptors();
public ControlDescriptor getControlDescriptors(int index);
public void setControlDescriptors(ControlDescriptor value[]);
public void setControlDescriptors(int index, ControlDescriptor value[]);

// methods below this line are used only by entity beans; thus,
 // they are not supported.

public boolean getReentrant();
public void setReentrant(boolean value);
public boolean isReentrant();
public void setAccessControlEntries(AccessControlEntry values[]);
public void setAccessControlEntries(int index, AccessControlEntry values[]);
public AccessControlEntry getAccessControlEntries(int index);
public AccessControlEntry[] getAccessControlEntries();

}

javax.ejb.deployment.ControlDescriptor
public class javax.ejb.deployment.ControlDescriptor extends java.lang.Object

implements java.io.Serializable {
 //transaction isolation attributes-currently not supported in OAS EJB

public final static int TRANSACTION_READ_COMMITTED;
public final static int TRANSACTION_READ_UNCOMMITTED;
Creating Deployment Files 4-11

Manifest File
public final static int TRANSACTION_REPEATABLE_READ;
public final static int TRANSACTION_SERIALIZABLE;

 //transaction attributes
public final static int TX_BEAN_MANAGED;
public final static int TX_MANDATORY;
public final static int TX_NOT_SUPPORTED;
public final static int TX_REQUIRED;
public final static int TX_REQURIES_NEW;
public final static int TX_SUPPORTS;

public ControlDescriptor();
public ControlDescriptor(Method method);

public int getTransactionAttribute();
public void setTransactionAttribute(int value);

 //The isolation level is always TRANSACTION_SERIALIZABLE.
 //It cannot be changed.

public int getIsolationLevel();
public void setIsolationLevel(int level);

public Method getMethod();
public void setMethod(Method value);

 boolean isMethodLevel();

// methods below this line are unsupported
public final static int CLIENT_IDENTITY;
public final static int SPECIFIED_IDENTITY;
public final static int SYSTEM_IDENTITY;
public Identity getRunAsIdentity();
public void setRunAsIdentity(Identity value);
public int getRunAsMode();
public void setRunAsMode()(int value);

}

Manifest File
The manifest file is a text file, MANIFEST.MF, that identifies the JAR file as an ejb-
jar file. You need to create an initial manifest file with the following sections:

■ (optional) one for the application

■ (required) one for each bean in the EJB application.
4-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating the JAR File for Installation
The JAR utility adds relevant information to this initial manifest file and places the
modified manifest file in the META-INF directory. The filename and directory
name are case-sensitive.

The sections are separated by a blank line. Each section contains three lines of the
form <field>: <value> and are:

■ The value of the Name field is the bean’s or application’s serialized deployment
descriptor.

■ The value of the Enterprise-Bean field is True or the value of the OAS-
Application field is True .

■ The value of the Application-Name field is the name of the application. The
value of the Bean-Name field is the name of a bean. These two fields are for
identification purposes and can be edited or deleted if required.

The following example shows a manifest file called myStack.MF for an application
called “myStack” with a bean called “ServerStack”.

Manifest-Version: 1.0

Name: myStack/myStack.ser
OASApplication: True
Application-Name: myStack

Name: myStack/ServerStack.ser
Enterprise-Bean: True
Bean-Name: ServerStack

Creating the JAR File for Installation
You need to create a JAR file containing your application and its support files. This
JAR file is used by the Oracle Application Server Manager to install and register the
EJB application in the application server environment.

Before you create the JAR file, you need to do the following:

1. Make sure that your classpath includes the correct Oracle Application Server
JAR files. To be able to compile and deploy your EJB object, you need to add
one or more of the following JAR files to the CLASSPATH of your development
environment.

■ $ORAWEB_HOME/classes/ejbapi.jar — The JAR file for EJB

■ (Unix only) $ORACLE_HOME/orb/4.0/classes/yoj.jar — The JAR file for
the ORB
Creating Deployment Files 4-13

Creating the JAR File for Installation
■ (Windows NT only) $ORACLE_HOME/orb/classes/yoj.jar

2. Compile the .java files of your EJB application into .class files.

3. Create the serialized objects containing your EJB deployment information. You
can create the serialized objects through one of two methods:

a. Compile the .java files for your deployment descriptors into an executable
and run the executable to create the serialized objects containing your EJB
deployment information.

b. Create an ECO.APP file containing deployment information and run the
eco2ejb utility.

The files you need to include in your JAR file:

■ The .class files generated from the .java files. This includes class files for your
implementation, the home interface, the remote interface, and the exception
classes. The javac compiler provides a -d option that lets you specify the desti-
nation directory for your class files. For example, to place your class files in the /
test/Stack/classes directory, type:

prompt> javac -d /test/Stack/classes *.java

■ The serialized objects containing your deployment descriptors for the EJB appli-
cation.

Once created, all files should be placed in the package directory in preparation to
be placed into a JAR file as shown in the following figure.

Note: Currently, the NT environment has a 512 byte limitation on
the expanded length of some environment variables (CLASSPATH,
JAVA_HOME, etc.). Since some cartridges and EJB objects try to
expand environment variables, make sure that your environment
variables are not longer than 250-300 characters.
4-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Deploying Your EJB Application
Figure 4–1 Directory structure for files to be placed into the JAR file

Once all of the files are ready, you can generate the JAR file by using the jar utility
that comes with JDK. This utility takes the initial manifest file that you created as
the base for constructing a complete manifest file. For example, if your files are in a
directory called myStack, you can do something such as:

prompt> jar cmf myStack.MF myStack.jar myStack *.ser

If you unjar myStack.jar and look at the contents of the file META-INF/MANI-
FEST.MF, you should see that the initial manifest file, myStack.MF, has been
extended by the jar utility to contain all the extra information required in a well-
defined JAR file.

Deploying Your EJB Application
To deploy an EJB application in the application server, you can use the Oracle
Application Server Manager. The only information you need to provide is the loca-
tion and name of a JAR file that contains the application’s files. If your JAR file does
not contain an OASApplicationDescriptor object, you must also provide a
name for the application because, in this case, the name cannot be read from the
JAR file. You will also need to decide if you want the installation to occur only on
the primary node or on all nodes. See Chapter 7, "Application Administration" in
the Administration Guide for more information on how to deploy your EJB applica-
tion.

When you install the JAR file, the Oracle Application Server Manager does the fol-
lowing with the JAR file:

Stack

myStack

MANIFEST.MFServerStack.class

ServerStackRemote.class
StackException.class

 classes

ServerStackDeployment.ser
myStackDeployment.ser

ServerStackHome.class
Creating Deployment Files 4-15

Deploying Your EJB Application
■ reads the manifest file from the JAR for a list of objects and their remote and
home interfaces

■ generates IDL files, stubs, and skeletons based on the remote and home inter-
faces

The IDL file, OASCLIENTInterfaces.idl, is to be used in compiling any IDL-
based client. This file is located in
$ORACLE_HOME/ows/apps/ejb/<appName>.

■ compiles the generated code

■ generates the registration files that are used to register the application in the
application server’s configuration file.

■ generates $ORAWEB_HOME/../apps/ejb/<appName>/_server.jar. This file is
added to the CLASSPATH environment variable for the application.

■ generates $ORAWEB_HOME/../apps/ejb/<appName>/_client.jar

You should see your application under Applications in the navigational tree.

If you modify the code of your EJB objects, you need to re-deploy the application so
that the generated files are updated. The Oracle Application Server Manager over-
writes the existing files. See “Re-deploying and Reloading Applications” on page
4-22 on how to re-deploy your EJB application.

Note: If <appName> is a composite JNDI name, then a hierarchy
of sub-directories will be created. For example, files for an applica-
tion named "corp/bank/branch" will be placed in a directory
named $ORACLE_HOME/ows/apps/ejb/corp/bank/branch.

Note: Two of these generated files are used by the client.

■ The $ORAWEB_HOME/../apps/ejb/<appName>/_client.jar
file should be placed in the client’s classpath.

■ The $ORAWEB_HOME/../apps/ejb/<appName>/
OASClientInterfaces.idl file should be used in compiling any
CORBA-based client for access to the server.
4-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Configuring the EJB Application
Configuring the EJB Application
After you have installed the application, you can modify certain values of its config-
uration parameters, if necessary. See Table 4–1 and Table 4–2 to see which parame-
ters can be changed through the GUI after deployment. If you change any
parameters, you must reload the application for the changes to take effect. See “Re-
deploying and Reloading Applications” on page 4-22 on how to reload your EJB
application.

You configure EJB applications using the Oracle Application Server Manager. Con-
figuration parameters for EJB applications are divided into three levels:

■ Server-Level Parameters

■ Application Instance Parameters

■ Bean-Level Parameters

A full description of these parameters is listed in “Parameters in Detail” on page
4-19.

Server-Level Parameters
The following table describes the server level parameters:

Note: You can also deploy or re-deploy your applications using
oasdeploy, a command line utility that deploys EJB and ECO appli-
cations on primary or remote nodes. It can also deploy applications
on all nodes in a site. See Chapter 8, “Deploying Applications
Using oasdeploy”.

Table 4–3 Server-level parameters

To set this... Use this parameter ... in this form Default

The priority of the application Priority Server Medium

Environment variables for the Java
Virtual Machine

Environment Variables Environment
Variables

Set by Oracle Application
Server

Logging parameters Logging On

Name-value pairs for the applica-
tion

n/a Java Environment From setEnvironment-
Properties() in the deploy-
ment descriptor
Creating Deployment Files 4-17

Configuring the EJB Application
Application Instance Parameters
The following table describes the parameters for application instances:

Bean-Level Parameters
The following table describes parameters applicable to all beans in an application:

Enable the transaction service for
the application

Transactions Tx Property From setTxEnabled() in
the deployment descriptor

 Transactional DADs used by the
application

Transactional DADs Tx Property From setTxDads() in the
deployment descriptor

Table 4–4 Application instance parameters

To set this... Use this parameter ... in this form Default

The timeout period for application
instances

Timeout Instance Parame-
ters

From setSessionTimeout()
in the deployment descrip-
tor

The minimum and maximum num-
ber of application instances

Min/max number of
instances

Tuning From setMinInstances()
and setMaxInstances() in
the deployment descriptor

Authentication string for the appli-
cation

Authentication String Security From setAuthentication-
String() in the deployment
descriptor

Name-value pairs for the object n/a Object Environ-
ment

From setEnvironment-
Properties() in the deploy-
ment descriptor.

Table 4–5 Bean-level parameters

To set this... Use this parameter ... in this form Default

Name-value pairs for beans n/a Java Environ-
ment

From setEnvironment-
Properties() in the deploy-
ment descriptor

Timeout of beans Timeout Bean Parameters From setSessionTimeout()
the deployment descriptor

Table 4–3 Server-level parameters

To set this... Use this parameter ... in this form Default
4-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Configuring the EJB Application
Parameters in Detail

Priority (server level)
This parameter sets the priority of an application with respect to the application
server site the application is deployed in. It is a performance tuning parameter. The
number of processes, threads, and instances for an application is automatically
determined based on the request load and priority level of the application and com-
ponents. Refer to the Performance and Tuning Guide for more information.

Performance can also be tuned according to minimum and maximum values speci-
fied for application instances called min/max-based tuning (see “Minimum and
Maximum Number of Instances (application level)” on page 4-21).

If you are deploying your application using a ECO.APP file, only minimum and
maximum application instances can be specified. The default value is medium.

Environment Variables (server level)
This form defines the values of environment variables used by Java Virtual
Machine processes. You should not remove any of the values from the pre-defined
environment variables, but you can define your own environment variables or
append values to the pre-defined variables.

Table 4–6 Environment variables

Variable Description

CLASSPATH A list of directories or JAR files that contain class files for
your objects. For example: %ORAWEB_HOME%/../apps/
ejb/brokerage/brokerage.jar.

When you install your application, CLASSPATH is set to
access all classes contained in the JAR file being deployed
as well as other supporting classes.

On Unix platforms, directories and JAR files in CLASS-
PATH are colon-separated. For example, file1.jar:file2.jar.

On Microsoft Windows NT, directories and JAR files in
CLASSPATH are semicolon-separated. For example,
file1.jar;file2.jar.

PATH A list of directories (colon-separated on Unix, semicolon-
separated on NT) that contain executables. This should be
set to contain %ORAWEB_HOME%\jdk\bin.
Creating Deployment Files 4-19

Configuring the EJB Application
Logging Parameters (server level)
You can enable or disable logging. If enabled, you can specify the directory and file
to which the logged messages are written for this application. You can also specify
the severity levels (between 0 and 15), where low values indicate serious problems.
Specifying a high value will cause the logger to log more messages because it
writes all messages up to and including that severity level. For example, if you set
the severity level at 3, the logger logs messages of severity levels 0, 1, 2, and 3.

All the components in the application server use the values in the severity levels in
the same way. See the Administration Guide for severity level details.

The default configuration for logging uses the same values as for system logging.

Java Environment (server level)
This form enables you to specify name-value pairs for the entire application. If you
want name-value pairs to be visible only for an object, use the Java Environment
(object level) form.

These name-value pairs are read from the deployment descriptors when you install
your application.

Transaction Property (server level)
An application can be enabled or disabled. If enabled, transactional DADs can be
specified for the application. See Chapter 6, “Transactions in EJB Objects” for
details.

Timeout (application level)
When an application instance has been idle for the specified duration (when no
object is alive and all home interfaces are idle), the application server can sever the

LD_LIBRARY_PATH (UNIX only) A colon-separated list of directories that con-
tain binary libraries.

JAVA_HOME The top-level directory where Java is installed. This should
be set to %ORAWEB_HOME%/jdk.

THREADS_FLAG (UNIX only) Whether the Java Virtual Machine should use
native threads or not. This is set to “native ”. This value is
required.

Table 4–6 Environment variables

Variable Description
4-20 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Configuring the EJB Application
connection between the client and the application instance. The timeout is specified
in seconds and its default value is 3600 or 1 hour. After severing the connection, the
application server can use the application instance to service another client or it can
destroy the instance.

Minimum and Maximum Number of Instances (application level)
When a Java Virtual Machine is started, it creates the specified minimum number
of application instances. As more clients arrive beyond the minimum, the Java Vir-
tual Machine creates more application instances up to the maximum number speci-
fied in the min/max setting. This is in contrast with the other tuning mode, which
is priority-based and discussed earlier in this section.

Authentication String (application level)
To protect an application with an authentication server scheme, you assign an
authentication string to the application. The authentication string has the following
format:

<scheme>(<realm>) [{"|" | "&"} & <scheme>(<realm>) ...]

Refer to "Security for IIOP-based Applications" in the Oracle Application Server Secu-
rity Guide for details.

Java Environment (object level)
This form enables you to specify name-value pairs for the object. If you want name-
value pairs to be visible to the entire application, use the Java Environment (server
level) form. These name-value pairs are read from the deployment descriptors
when you install your application.

Timeout (object level)
When an object instance has been idle for the specified duration (when no client
has made a request for the specified time), the application server can sever the con-
nection between the client and the object instance. The timeout is specified in sec-
onds. The default, value is 0, is to use the same timeout value specified for
application instances.
Creating Deployment Files 4-21

Re-deploying and Reloading Applications
Re-deploying and Reloading Applications

Re-deploying Your EJB Application
If you modify your application, you need to re-deploy the application using the
Oracle Application Server Manager or the oasdeploy utility described in Chapter 8.

To re-deploy the application:

1. Stop any running processes of the EJB application that you need to re-deploy.

2. Re-deploy the application in the same way that you originally deployed it. This
time, choose the "Force" option when redeploying your application.

3. Select “All” in the Oracle Application Server Manager and click the reload icon

 so that the appropriate components of Oracle Application Server are noti-
fied. You do not have to re-start the application server.

Reloading Your EJB Application
If you change the configuration of the application using the Oracle Application
Server Manager, you need to reload the configuration data. You do not have to re-
deploy the application.

To reload the configuration data, select “All” in the Oracle Application Server Man-

ager and click the reload icon so that the appropriate components of Oracle
Application Server are notified. You do not have to re-start the application server.

Improving Performance
This section describes how you can improve the performance of EJB applications.

Just-In-Time Compiler
To provide portability on different platforms, Java uses an interpreter that compiles
Java programs into bytecodes, which are instructions for the Java Virtual Machine.
Each platform implements the virtual machine in software, which interprets the vir-
tual machine instructions when a Java program is executed. Therefore, the byte-

Note: To use the command line to deploy or re-deploy your appli-
cation, you need to use the oasdeploy utility. Refer to the
Chapter 8, “Deploying Applications Using oasdeploy” chapter.
4-22 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Improving Performance
codes compiled from a Java program do not depend on any particular platform and
they can be executed on any machine.

A Java program usually runs slower than the same program compiled to native
machine instructions. This is the performance penalty paid to achieve portability.

It is possible to compile the bytecodes into native machine instructions of the hard-
ware platform. By doing so, the same set of codes can be executed much faster. The
cost of this speed-up is the time spent to compile the instructions.

This compilation is called Just-In-Time (JIT) compilation because it does the compi-
lation at the moment when the Java program is about to be executed. Compilation
needs to occur only once; however, the recompiled instructions can be executed
multiple times. Many JIT compilers recompile virtual machine instructions only
once after the corresponding Java method is invoked for the first time, and cache
the recompiled instructions until they exit. The Java interpreter defines a standard
interface so that any JIT compiler can be plugged into it.

The following figure shows how a JIT compiler works with EJB objects:

Figure 4–2 Just-In-Time compilation

Disabling the JIT Compiler
Oracle Application Server includes a JIT compiler by default and is enabled in the
Oracle Application Server environment. If you want to disable the JIT compiler, per-
form the following steps:

1. In Oracle Application Server Manager, display the Environment Variables form
(Figure 4–3) for your EJB application.

2. Set the JAVA_COMPILER environment variable to “NONE”.

EJB Server

JIT compiler

Machine

foo.class

Cached bytecodes

Bytecodes

Bytecodes

Native machine instructions
Creating Deployment Files 4-23

Improving Performance
Figure 4–3 Environment variables form

Setting Performance Settings for Application Instances
You can get better performance from your applications if housekeeping tasks such
as starting up the Java Virtual Machine are done before requests arrive. This
enables the application server to process requests faster.

The first request to an application can seem to take longer than subsequent
requests; this is because Oracle Application Server starts the Java Virtual Machine
only when it receives the first request for an application instance. Subsequent
requests are serviced by the already running virtual machine.

You can avoid this performance hit by doing the following:

■ Set the number of initial startup servers or the minimum number of application
instances to be greater than 0. This causes Oracle Application Server to start up
the Java Virtual Machine with the specified number of server processes or
application instances when an application is deployed.

See the Performance Guide for more information on both modes.

Note: JIT compiled code does not provide line number informa-
tion when an exception stack is printed. If you are debugging your
application, you may want to disable the JIT compiler to be able to
trace problems in your code.
4-24 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Debugging EJB Applications
Debugging EJB Applications
You should debug your EJB application as much as possible on your development
platform before trying to debug it on the application server deployment platform.
Debugging on a development platform (for example, a Java IDE such as Oracle JDe-
veloper) is easier within a controlled environment.

Oracle JDeveloper provides tighter integration to the application server than other
IDEs. One of the advantages it provides is local debugging facilities for EJB objects.
See the Oracle JDeveloper documentation for details.

After you have tested and debugged EJB objects on your development platform,
you deploy and test them on the application server. The application server pro-
vides debugging facilities in the form of logging messages; it does not provide
remote debugging (such as debugging across different Java Virtual Machines).

The Logger Class
The oracle.oas.ejb.Logger Class enables EJB objects to access the application
server’s logger service, which can write messages to a file or database. To get a Log-
ger object, use JNDI with the URL prefix “oas_service:logger”.

Log Files
EJB objects can write messages to the log file that is used by the application server,
or they can write to a different log file.

■ To write messages to the application server’s log file, you do not have to do
anything. By default, the logging service writes messages to the log file defined
by the Logging Directory and the Log File fields in the System Logging form.
To display this form in the Oracle Application Server Manager, click website40/
Oracle Application Server/Logging/System.

■ To write messages to a log file specifically for the EJB application, you specify
the log file in the Logging form. To display this form in the Oracle Application
Server Manager, click website40/Applications/<appname>/Configuration/
Logging. The log file specified in this form is used only by the objects in this
application.

See Chapter 9, "Logging and Database Utilities" in the Administration Guide for
more information.
Creating Deployment Files 4-25

Debugging EJB Applications
Severity Levels
The Logger class writes messages only when they are at or below the severity level.
For example, if you set the severity level of the application server to 7, only mes-
sages with severity level of 7 or lower are written to the log.

You set the severity level for the application server as a whole in the Severity Level
field in the System Logging form. To access this form in the Oracle Application
Server Manager, click website40/Oracle Application Server/Logging/System.

You can override the severity level of the application server for individual applica-
tions. You might want to do this if you want to see more messages only from spe-
cific applications. For example, you can set the severity level of the application
server as a whole to a low value, such as 1, but set the severity level of the applica-
tion you are debugging to a high value, such as 10.

To override the severity level, you use the Logging form for the EJB application. To
access this form, click website40/Applications/<appname>/Configuration/Log-
ging.

To set the severity level of messages, call the setSeverity() method in the ora-
cle.oas.ejb.Logger instance. The severity level is then set for all messages
sent from this EJB object instance until you change it by calling the setSeverity()
method again. You can determine the current severity level by calling getSeverity().
The default severity level is Logger.LOG_SEVERITY_DEBUG.

The example on page 3-10 gets a Logger object, sets the severity level, and writes
messages.

Logging Modes
The logger can write messages as they occur or it can collect them and write them
in batches. Batch mode is more efficient because the logger does not have to access
the log file as many times as in non-batch mode. However, in batch mode, if the sys-
tem fails, messages in the logger that are waiting to be written to the log file may
not be written. Also, when you are debugging an application, you might want to
set the batch mode to off so that you can see messages in the log file with minimal
delay.

You set the batch mode in the Logging form in the Oracle Application Server
branch:
4-26 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Debugging EJB Applications
Figure 4–4 Logging form
Creating Deployment Files 4-27

Debugging EJB Applications
4-28 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Developing Clients for EJB
5

Developing Clients for EJB Applications

This chapter describes how to create clients for EJB applications. A client needs to
obtain an object reference to a bean before it can invoke methods on the bean. The
way to obtain the reference varies with the type of client (e.g. stand-alone clients
have different requirements for obtaining object references than applet clients).
These differences are explained in this chapter.

Contents
■ Overview

■ Getting the Object Reference for a Bean

■ Invoking Methods on the Object

■ Destroying an Object

■ JNDI Supported Features

■ Files Required by Clients

■ APPLET Tags

■ Performance Features of the JNDI Provider

Note: At this time, Enterprise JavaBeans are defined to be used
by Java clients only. This is due to the requirement of supporting
parameter passing using object by value semantics. If your applica-
tion must be accessed from non-Java clients, we suggest develop-
ing and deploying your application using the ECO/Java
component model in Oracle Application Server.
 Applications 5-1

Overview
Overview
Clients of EJB applications can be:

■ Java applications

■ Java applets running in browsers

■ Beans in the same or other EJB applications

■ JServlet cartridges

EJB applications and their beans are CORBA objects, which are registered with the
application server’s ORB. To access these objects, clients use Internet Inter-ORB Pro-
tocol (IIOP), instead of HTTP. Clients need an ORB on the client-side to access EJB
applications. If your client is a Java applet, you may be able to use a compatible
ORB in the browser or download a pure Java ORB as part of your applet.

EJB applications are not invoked in the same manner as HTTP-based Oracle Appli-
cation Server applications. The client needs to get an object reference to the home
interface of a bean, which it can then use to create an EJB object through which to
invoke methods on the bean. To get an object reference, the client uses the Java
Naming and Directory Interface (JNDI). After the client is done with the bean
instance, it calls the remove() method to destroy it. A summary of the process is
as follows:

1. Get the object reference for the home interface of the bean.

2. Invoke create() on the home interface. This instantiates the bean as an EJB
object.

3. Invoke remote interface methods in the EJB object.

4. After the EJB object is no longer needed, invoke remove() to destroy it.

Object methods may return other EJB objects or any other RMI-compatible non-
Remote value, and clients are free to decide how they want to display the return
values to the user. For example, one client can simply display the value in a text
area, while another client can display it graphically in a chart.

Getting the Object Reference for a Bean
Before a client can invoke a method on a bean, it must first get a reference to the
home interface of the bean and invoke the create method on the home interface.
To do this, the client uses JNDI which provides a Naming Server to service look up
requests.
5-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Getting the Object Reference for a Bean
JNDI in the Application Server
JNDI (Java Naming and Directory Interface) consists of a set of APIs defined by Jav-
aSoft. The APIs provide directory and naming services independent of the underly-
ing directory server. JNDI consists of the JNDI API and JNDI SPI.

■ JNDI API—A client API that allows Java applications to access a variety of
directory services.

■ JNDI SPI—An interface that allows service providers to plug in their implemen-
tation of a naming or directory server.

The application server includes a JNDI naming server SPI, which allows JNDI cli-
ents to get object references to EJB and ECO/Java home interfaces.

For more information on JNDI, see the JavaSoft web site (http://www.javasoft.com).

Navigating the Name Space
A client provides a name to the server and gets back an object reference if the name
resolves to a component. Names are relative to a specific context. You can lookup
the name relative to the initial context or to a retrieved relative context.

When you use JNDI to get an object reference for a home interface, your client does
the following:

1. Set up the initial context factory property.

2. Obtain the initial context.

3. Provide a string or JNDI composite name that identifies a bean or a relative con-
text that you can retrieve several beans from.

The JNDI name space for the application server is a hierarchical name space. It
is defined using the prefix of "oas :" for its URL protocol. The name following
the "oas :" prefix is the combination of host, application, and bean names
defined in the deployment descriptor.

Application Type JNDI URL Naming Protocol

Application The object is identified by oas://<hostname>[:<port>]/
<application_name>/<bean_name>

Applet The object is identified by oas:///<application_name>/
<bean_name>
Developing Clients for EJB Applications 5-3

Getting the Object Reference for a Bean
4. Execute lookup() off of the initial context (or any relative context) to resolve
the name to an object reference. Notice that the name space is read-only for cli-
ents.

You can execute lookup off of the initial context to retrieve a relative context.
Then, you can execute multiple lookup invocations off of the relative context
for different JNDI names.

The JNDI object name can be given to the lookup method as either a String
identifier or Name object.

a. String identifier: The string contains the name of the EJB application and
the name of the bean’s home interface. The application name and the home
interface name are hierarchical names using “/” as the separator. The full
name of a home interface is the combination of the application and home
interface names separated by “/”:

<application name> / <bean’s home interface name>

The application and home interface names are defined in the serialized
deployment descriptors of the enterprise bean. The application name is
specified using oracle.oas.ejb.deployment.OASApplicationDe-
scriptor.setBeanHomeName() method. The home interface name of a
bean is specified using javax.ejb.deployment.DeploymentDe-
scriptor .setHomeInterfaceName() . For deployment information, see
Chapter 4, “Creating Deployment Files”.

b. JNDI compound name: You can create a CompoundName object with the
JNDI object name, prefixed with "oas :".

Accessing the Naming Server from a Client
The client initializes the naming server and retrieves the initial context from this
server. The following sections list how each type of client performs the initializa-
tion and retrieval process.

■ Java Application Client

■ Java Applet Client

■ Enterprise JavaBean and JServlet Clients
5-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Getting the Object Reference for a Bean
Java Application Client
The client performs the following steps:

1. Initialize the naming server by specifying in an environment variable of type
Hashtable the Java package that contains the naming server. The
javax.naming.Context. INITIAL_CONTEXT_FACTORY property must
specify the initial context factory class "oracle.oas.nam-
ing.jndi.RemoteInitCtxFactory" .

Hashtable env = new Hashtable();
env.put(javax.naming.Context. INITIAL_CONTEXT_FACTORY,
" oracle.oas.naming.jndi.RemoteInitCtxFactory ");

2. Get the initial context. You can retrieve the initial context in one of two ways:

a. Provide the JNDI package within an environment variable to the
InitialContext constructor.

javax.naming.Context initialContext = new InitialContext (env);

b. Provide the JNDI package within system properties from the command
line. You define system properties using the -D option in the java com-
mand.

prompt> java -Djava.naming.factory.initial=
"oracle.oas.naming.jndi.RemoteInitCtxFactory" myClientApp

Within your code, you still need to create an InitialContext, but you do not
provide the environment variable to it as a parameter.

javax.naming.Context initialContext = new InitialContext ();

Java Applet Client
The client performs the following steps:

1. Initialize the naming server by specifying the following two properties:

a. The oracle.oas.naming.jndi.appletinstance property. The value
of the property is the applet instance, which is a Java.lang.Applet
object.

b. The Java package that contains the naming server. The javax.nam-
ing.Context. INITIAL_CONTEXT_FACTORY property must specify the
initial context factory class "oracle.oas.naming.jndi.RemoteIn-
itCtxFactory" . The environment variable is of type Hashtable .
Developing Clients for EJB Applications 5-5

Getting the Object Reference for a Bean
// code in the applet
Hashtable env = new Hashtable();

// "this" refers to the applet
env.put("oracle.oas.naming.jndi.appletinstance" , this);

env.put(Context.INITIAL_CONTEXT_FACTORY,
" oracle.oas.naming.jndi.RemoteInitCtxFactory ");

2. Get the initial context. You can retrieve the initial context by providing the
JNDI package within an environment variable to the InitialContext con-
structor.

Context initialContext = new InitialContext (env);

Enterprise JavaBean and JServlet Clients
When the client of a bean is another bean or a JServlet application, the Initial-
Context constructor should not contain an environment that sets the javax.nam-
ing.Context.INITIAL_CONTEXT_FACTORY property. The application server
presets this property in the JVM for this type of client. You can get the initial con-
text with no arguments.

// get the initial context without specifying an environment
javax.naming.Context initialContext = new InitialContext ();

Identify and Lookup the Desired Object
The client invokes the lookup() method in the InitialContext class to retrieve
one of two things:

■ The object reference for the home interface of a bean

■ An intermediate JNDI context

The lookup() method takes one parameter, which can be either:

■ A string that specifies the name of a home interface or an intermediate context.

■ A JNDI CompoundName object with the home interface name or intermediate
context name, prefixed with "oas :". See the JavaSoft JNDI documentation for
details on usage of Names and CompoundNames.

Note: See the JServlet Developer’s Guide for more information on
invoking EJBs with JServlet applications.
5-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Getting the Object Reference for a Bean
The following gives the basics for identifying and looking up the object reference.
However, each client type has different requirements for specifying the name for
the lookup. After you understand the basics, see each client type for its particular
requirements:

BASICS:
■ Specifying a String for the Home Interface Name

■ Specifying a String for an Intermediate Context

CLIENT TYPE REQUIREMENTS:
■ Java Application Client

■ Java Applet Client

■ Enterprise JavaBean Client

■ JServlet Client

Specifying a String for the Home Interface Name
The string parameter has the following format:

oas:// <host>:<port>/<application>/<object>

This name assumes the application is registered with the listener running on
machine “host2” on port 80. Graphically, the naming hierarchy can be depicted as
in Figure 5–1.

Note: We do not present an example for the CompoundName res-
olution. See the JNDI documentation for more information.

<host> The machine on which the listener component of the
application server runs.

<port> Port number where the listener listens for requests. If not
specified, the default is 80.

/<application>/<object> The hierarchical path to the object. For example, if you
have an EJB application whose name is “ejb/myStack”,
and the application contains a bean with home interface
named “ServerStackHome”, the absolute name for the
object would be: oas://host2/ejb/myStack/ServerStackHome
Developing Clients for EJB Applications 5-7

Getting the Object Reference for a Bean
Figure 5–1 Sample objects in an application server environment

The name “oas://host2/ejb/myStack/ServerStackHome ” refers to the
home interface of the ServerStack object in the application myStack. The host1 and
host2 refer to the machines that run listener components of the application server.
The listeners can be on the same or different application server sites. Note that the
application name can be made of components separated by “/” (that is,
“application_1/sub_application_1 ”).

The string can be used in the lookup() method as follows:

ServerStackHome stackHome = (ServerStackHome)
PortableRemoteObject.narrow(initialContext.lookup(

" oas://host2/ejb/myStack/ServerStackHome "),
ServerStackHome.class);

Note: The PortableRemoteObject class is used to narrow the
returned home interface as a RMI remote interface. See “Using Por-
tableRemoteObject for Narrowing” on page 5-12 for information
on how to use PortableRemoteObject for narrowing your
returned object references.

Application Server

host1 host2

application_1

object_1 object_2

myStack

ServerStackHome

sub_application_1

ejb
5-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Getting the Object Reference for a Bean
Specifying a String for an Intermediate Context
The lookup() method returns a Context object if the name does not resolve com-
pletely to an object. For example, if you call lookup() with a name that resolves
only to the EJB application:

// resolve only to the EJB application
javax.naming.Context appCtx = (Context) initialContext.lookup(

" oas://host2/ejb/myStack ");

The method returns a Context object that you can use in subsequent lookup()
calls to retrieve object references to objects in the application. For example, the
appCtx context object can be used in the following statement:

// use a relative name, context is from the first lookup()
ServerStackHome stackHome = (ServerStackHome)

PortableRemoteObject.narrow(appCtx .lookup(
" ServerStackHome "),ServerStackHome.class);

This second lookup() call is made with respect to the context object that was
returned from the first lookup() call. The name is a relative name.

Java Application Client
Use one of two ways to retrieve the object reference for a bean.

■ Create an absolute name leading to the object, then lookup() the object (home
interface of bean). The following example creates the absolute name of " oas://

host2/ejb/myStack/ServerStackHome " and performs a lookup on this name.

ServerStackHome stackHome = (ServerStackHome)
PortableRemoteObject.narrow(initialContext. lookup (

" oas://host2/ejb/myStack/ServerStackHome "),
ServerStackHome.class);

■ Create an absolute name leading to an application or another intermediate con-
text, followed by subsequent lookup() calls that point to the object. The fol-
lowing example retrieves the intermediate context to the application mystack

Note: The URL notation "oas :" is only required when doing a
lookup from the initial context. Once you have an intermediate con-
text, the JNDI provider is known and the names can be given
directly.
Developing Clients for EJB Applications 5-9

Getting the Object Reference for a Bean
with “oas://host2/ejb/myStack ”. It then performs the lookup for the
object by providing the home interface name, ServerStackHome.

javax.naming.Context appCtx = (Context) initialContext.lookup(
" oas://host2/ejb/myStack ");

ServerStackHome stackHome = (ServerStackHome)
PortableRemoteObject.narrow(appCtx. lookup (

" ServerStackHome "),ServerStackHome.class);

Java Applet Client
For applet clients, you do not need to set the host and port information explicitly
within the JNDI lookup name. When you set the environment variable with applet-
instance, this marks where the applet is coming from. Thus, the host and port are
known. The following example shows the absolute path name of "oas:///ejb/
myStack/ServerStackHome" . Notice that it does not include the hostname.

// The host and port info do not appear in the name. For clients
// that are applets, the host and port information are the same as the host:port
// from which the applet was downloaded. Note that three "/" are used in the
// lookup name.
ServerStackHome stackHome = (ServerStackHome)

PortableRemoteObject.narrow(initialContext.lookup(
" oas:///ejb/myStack/ServerStackHome "),ServerStackHome.class);

Enterprise JavaBean Client
A bean tries to access another bean within the application server. The JNDI name
provided within the lookup is different depending on whether your bean is access-
ing another bean within the same application or a bean that exists within another
application. The JNDI provider allows relative names for your lookup.

Accessing a Bean in the Same Application If the target home interface and the client
bean belong to the same application you only need to specify the name of the home
interface of the server bean relative to the application. The following example
shows that the JNDI lookup name would be "oas:ServerStack2Home" , which
does not include the hostname, ejb identifier, or application name.

// ServerStack2 is the enterprise bean.
// Initial Context is assumed to have been specified as above.
ServerStack2Home stack2Home = (ServerStack2Home)

PortableRemoteObject.narrow(initialContext.lookup(
" oas:ServerStack2Home "),ServerStack2Home.class);
5-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Getting the Object Reference for a Bean
Accessing a Bean in a Different Application To access a bean in another application, you
need to specify the name of the application and the home interface name of the
bean in the following format:

oas:/app/home_interface_name

You do not need to provide the host and port information because the application
server knows how to access the current site.

ServerStack2Home stack2Home = (ServerStack2Home)
PortableRemoteObject.narrow(initialContext.lookup(

" oas:/app_name/ServerStack2Home "),ServerStack2Home.class);

If the home interface belongs to another Oracle Application Server site (different lis-
tener and port), host and port information is needed:

ServerStack2Home stack2Home = (ServerStack2Home)
PortableRemoteObject.narrow(initialContext.lookup(

" oas://site2/host2:8877/app_name/ServerStack2Home "),
ServerStack2Home.class);

JServlet Client
The JNDI name provided within the lookup is different depending on if your JServ-
let cartridge is accessing a bean within this Oracle Application Server site or a bean
that exists on another Oracle Application Server site. The following example shows
that you do not include the name of the host when accessing a bean located within
the same Oracle Application Server.

// object reference of home interface of bean
// bean is on same application server as client,
// no need to specify host and port
ServerStackHome stackHome = (ServerStackHome)

PortableRemoteObject.narrow(initialContext.lookup(
" oas:///ejb/myStack/ServerStackHome "),ServerStackHome.class);

You need to specify the host and port information only if the bean and the JServlet
cartridge are running on different application server sites.

// host and port needed (default port 80 used)
ServerStackHome stackHome = (ServerStackHome)

PortableRemoteObject.narrow(initialContext.lookup(
" oas://host2/myStack/ServerStackHome "),ServerStackHome.class);
Developing Clients for EJB Applications 5-11

Invoking Methods on the Object
Using PortableRemoteObject for Narrowing
The main purpose of the PortableRemoteObject class is to narrow or typecast
RMI remote object references. When JNDI returns local objects, such as Logger , the
object returned is a concrete datatype. It can be assigned to a variable of the
expected type by using the Java casting operator.

However, the same is not true for references to remote objects, such as the home or
remote interfaces discussed in this chapter. In this case, the object being returned
needs to be narrowed to a specific remote interface type before casting is possible.
The PortableRemoteObject.narrow method passes as an argument the remote
reference and the class type expected to be returned. This method will return the
correct stub for the object that, at this point, can now be assigned using the casting
operator.

PortableRemoteObject provides export and unexport methods that are used
for activating and deactivating CORBA implementations that are used as client call-
backs.

These services are provided directly by CORBA; however, using PortableRemo-
teObject allows you to compile your code without the presence of the CORBA
stubs and skeletons. This makes your code easier to migrate to EJB for future con-
cerns.

Accessing C++ and Existing JCORBA Applications
In addition to accessing an EJB component, your Java client can access C++ and
your existing JCORBA applications. The difference is that the object you receive
from JNDI is not the home interface, but the actual C++ or JCORBA object. The
object returned by JNDI when you perform a lookup on the cartridge name will be
the actual new instance. Every time you perform a lookup, you receive a new
instance.

Invoking Methods on the Object
Once you have the reference to a home interface, you can instantiate an EJB object
(remote interface) by invoking create() through the home interface. After that,
the EJB object’s business methods can be invoked. For example:

// assume that stackHome contains the reference to ServerStackHome
ServerStackRemote stackRemote = stackHome.create();

// push and pop are business methods
stackRemote.push("12"); // store the value "12" on the stack
int val = stackRemote.pop(); // remove the value from the top of the stack
5-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

JNDI Supported Features
Destroying an Object
When a client no longer needs to refer to a bean, it calls the remove() method on
the bean. The ORB then releases the object instance (remote interface) so that the
JVM can clean it up during garbage collection. The remove() method takes no
parameters.

// release the bean
stackRemote.remove();

JNDI Supported Features
The JNDI implementation in the application server provides read-only access to the
JNDI naming service. Users do not have permission to modify the contents of the
naming service using the implementation’s JNDI SPI. Only the following features
are available:

■ A complete implementation of lookup including lookup of partial names to
subcontexts using lookup() .

■ Listing the contents of the naming service using list() and listBind-
ings() .

■ Access to the Environment object, including the following methods: getEnvi-
ronment() , addToEnvironment() , removeFromEnvironment() .

■ Retrieval of a name parser using getNameParser() . This is used with Com-
poundName.

■ Methods for composing the name of a context with a name relative to this con-
text (for example, using composeName()).

■ Closing a previously accessible context.

■ Implementation of both String and Name versions of all supported methods.

In addition, you are required to setup certain JNDI properties for applets, for secu-
rity, or for setting the JNDI package name. These properties are listed in different
parts of this book, as shown below in the table:

Note: Method invocations to the same instance must be invoked
sequentially. If a different client thread makes an invocation while
the first is executing, an exception is thrown to the second invoca-
tion.
Developing Clients for EJB Applications 5-13

JNDI Supported Features
Disallowed JNDI Features
The JNDI implementation in the application server does not allow client access to
the following JNDI methods: bind() , rebind() , unbind() , rename() , cre-
ateSubContext() , destroySubContext() . All forbidden methods throw a
javax.naming.NoPermissionException exception.

The SPI implementation in the application server provides a read-only access to the
name space and therefore updating the bindings is not relevant.

Property Discussed in...

Setting the package
name

Set within javax.naming.Con-
text.INITIAL_CONTEXT_FAC
TORY or java.naming.fac-
tory.url.pkgs

“Accessing the Naming
Server from a Client” on
page 5-4

Describing the
client as an applet

oracle.oas.naming.jndi.
appletinstance

“Java Applet Client” on
page 5-5

Setting up security Set javax.naming.Context.
SECURITY_PROTOCOL,
SECURITY_PRINCIPAL, and
SECURITY_CREDENTIALS

"Setting Authentication for
EJB or ECO/Java Clients"
in Chapter 5 of the Security
Guide

Note: Look up operations on the JNDI initial context can be time
consuming. If your clients have to look up multiple home inter-
faces, use the initial context to look up a common intermediate con-
text and then look up home interfaces using this relative
intermediate context.
5-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Files Required by Clients
Files Required by Clients
Clients must have access to the bean client APIs as well as the stubs generated dur-
ing deployment. The APIs and the stub files are located in:

■ $ORAWEB_HOME/classes/ejbapi.jar

■ $ORAWEB_HOME/../apps/ejb/<appName>/_client.jar

If your client is a non-Java application, you must include:

■ $ORAWEB_HOME/../apps/ejb/<appName>/OASClientInterfaces.idl

You should add these files to the CLASSPATH variable.

For clients using the ORB, you must also include the following file in CLASSPATH:

■ $ORAWEB_HOME/classes/oasoorb.jar

Files Required by Applets
The required files must be specified in the archive attribute of the <APPLET> tag.
The required files are:

■ the JAR files mentioned in the previous section.

■ applet class files

Note: You can use oasdeploy to download the JAR file containing
the client stubs required by a Java client application to communi-
cate with the server application. The client should have Oracle
Application Server 4.0.8 or JDeveloper 2.0 installed. Use the oas-
deploy -c option to indicate the directory in which to download
the JAR file to. For example,

oasdeploy -t EJB -a myStack
-u admin/adminpasswd@node1:8888 -c /client/stubs

Note: If your target browser does not support multiple jar files in
the archive attribute of the APPLET tag, you will need to create a
single jar file that contains all of the class files required by the
applet.
Developing Clients for EJB Applications 5-15

APPLET Tags
APPLET Tags
Applet clients can use the pure Java version of the Oracle Application Server ORB
by using the following parameters in the <APPLET> tag:

<APPLET code=" myApp.TextFuncsDemo .class" codebase="http:// myserver / applet_dir "
archive="ejbapi.jar,_client.jar,oasoorb.jar, applet_class_files .jar"
width=100 height=100>

<PARAM name="org.omg.CORBA.ORBClass" value="oracle.oas.orb.CORBA.ORB">
<PARAM name="ORBdisableLocator" value="true">
</APPLET>

■ The codebase attribute has to be an absolute URL; it cannot be “.” (current
directory).

■ The archive attribute must contain the files required for clients in the proper
order. Copy these files into the codebase directory. If you have more than one
_client.jar file, use unique filenames in the codebase directory.

■ The org.omg.CORBA.ORBClass parameter indicates the primary ORB class.
If you do not use the pure Java version of the ORB, specify the proper class for
your ORB.

■ The ORBdisableLocator parameter is required if you are not using Visi-
genic’s Gatekeeper. If it is not specified and the client uses a Visigenic ORB, the
client’s ORB will always expect Gatekeeper.

■ The JNDI SPI implementation is able to automatically extract many of its envi-
ronment attributes from the tag <PARAM>. Exceptions are
INITIAL_CONTEXT_FACTORY and oracle.oas.naming.jndi.appletin-
stance .

Performance Features of the JNDI Provider
The JNDI SPI provider for Oracle Application Server supports co-location, which
increases the performance of your EJB application.

Note: To run applets that invoke bean objects, browsers must sup-
port Java 1.1.6. Oracle Application Server does not support Java 1.2
at this time.
5-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Performance Features of the JNDI Provider
Co-Location of Beans
Co-location guarantees that all of the home interfaces and beans within an applica-
tion that are requested by a particular client reside in the same JVM. By having all
of the beans in the same JVM, the application server reduces interprocess communi-
cation and the number of remote connections on the network. Since all of the beans
associated with a client are co-located, the application server can better manage
and share the resources used on behalf of the client.

Co-location is accomplished by the use of a cache in the SPI provider. Once a client
using an application is connected to a particular application instance, the SPI uses
its cache to guarantee that any future request for the same application is serviced
by the same JVM. In other words, a lookup is invoked for a context corresponding
to an application name, JNDI associates the client with a particular application
instance in a specific JVM. Any future access to the same application name is
directed to the same application instance.

The Caching Strategy
The behavior associated with the default caching strategy depends on the type of
the client.

Client Applications
The default is to use a static cache. The cache is a static variable. All JNDI requests
use the same cache.

Java Applets
The default is a cache associated with an applet instance. This means that any
beans created anywhere in a particular applet will be calculated.

Beans in Oracle Application Server
The default is to use a cache associated with the application instance in which the
bean is executing. This means that any beans created by those beans belonging to a
client will also be co-located.

Cache Cleanup
The association of an application instance with a client ends when the cache is
cleaned up. This happens automatically during one of the following: garbage collec-
tion for the Context , termination of application instances, or execution of finaliz-
Developing Clients for EJB Applications 5-17

Performance Features of the JNDI Provider
ers on exit. Alternatively, the user may break the association programmatically by
executing a Context.close() for the initial context.

Terminating Application Instances
When a cache on a client is released (garbage collected or the context closed), the
application instance is notified that the association has ended. At this point, no cli-
ent may access the home interface through JNDI. Since all beans should have been
removed, the application instance can terminate its association with the client and
be assigned to a new incoming client.

However, a client may not have removed (or destroyed) all of its beans. Instead, it
may have serialized the handle to a bean and stored it on a file for later use. In such
cases, the orphan application instance must continue to be active until the rest of
the beans are removed or their timeout expires. At this point, the application
instance association is considered terminated.

When the association is terminated, the JNDI cache for the application instance is
cleaned. The disassociation propagates to all other applications that were created
by beans in the original application instance.

Due to the amount of resources that may be consumed by an orphan application
instance, it is important to remember to remove all of your beans (if possible)
before exiting your client application and to make sure that any beans transitively
created are also removed.
5-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Transactions in E
6

Transactions in EJB Objects

This chapter describes how to create transactional beans within EJB. You can use
one of two methods to enable transactions within your bean: declarative or pro-
grammatic.

■ Declarative transactions: The EJB runtime performs the transactional opera-
tions on your behalf for the bean.

■ Programmatic transactions: The bean must execute each transactional opera-
tion when appropriate.

Read Chapter 10, “Enabling Transactions” chapter in the Administrator’s Guide
before reading this chapter to familiarize yourself with the transaction service in
Oracle Application Server.

Contents
■ Overview

■ Declarative Transactions

■ Programmatic Transactions

■ Transactions and Threads

■ Transactions for Stateful and Stateless Objects

Overview
EJB objects support declarative and programmatic transactions. In declarative trans-
actions, the application server demarcates transactions for you automatically. In
programmatic transactions, you demarcate transactions yourself using methods in
the UserTransaction class.
JB Objects 6-1

Overview
You use JDBC to access databases from EJB objects. If your transactions involve
only one database and can be completed within one method call, you can use a non
JTS-aware JDBC driver and you do not have to use JTS transactions. However, if
your transactions span multiple method invocations, are performed in collabora-
tion with multiple objects, or span multiple databases, then you have to use JTS
and a JTS-aware JDBC driver.

To use JTS with JDBC, you need the following:

■ JDBC driver that is JTS-enabled

Oracle Application Server provides a JTS-enabled driver that connects to
Oracle7 and Oracle8 databases.

■ Transactional DADs (database access descriptors) configured through Oracle
Application Server

DADs provide information on the databases involved in the transaction. See
Chapter 10, “Enabling Transactions” in the Administrator’s Guide for informa-
tion on how to configure your DAD to be transactional.

Transaction Parameters in the Deployment Descriptor
The oracle.oas.ejb.deployment.OASApplicationDescriptor class contains
additional methods that enable you to specify transaction information for the
application and the objects in the application.

These methods are in addition to the methods in the standard javax.ejb.deploy-
ment.ControlDescriptor class.

// set the ControlDescriptors for the EJB application.
// cdAll is an array of ControlDescriptors, one cell for each bean. Since
// there is only one bean in this application, we just need a one-cell
// array

ControlDescriptor cd = new ControlDescriptor();

Note: If your EJB deployment descriptor is EJB 1.0 compliant,
you will not create and configure the OASApplicationDescrip-
tor , which is Oracle-specific. Instead, after you deploy your EJB
application, you must enable transactions and select the DADs to
be used with this application through the Oracle Application
Server Manager. These fields are configured in the "Tx Property"
form within the Application folder. See Chapter 10 in the Adminis-
tration Guide for more information on configuring transactions.
6-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Overview
cd.setTransactionAttribute(ControlDescriptor.TX_BEAN_MANAGED);
cdAll[0] = cd;
sd.setControlDescriptors(cdAll);

Enabling Transactions
In the class, the setTxEnabled() method specifies whether or not the EJB objects in
the application use JTS. The method takes one parameter, a boolean value. To spec-
ify that the application uses transactions, set the parameter to true :

OASApplicationDescriptor ad = new OASApplicationDescriptor();
ad.setTxEnabled(true)

The default value is false .

Specifying Transactional DADs in the Application
In the OASApplicationDescriptor class, the setTxDads() method specifies the trans-
actional DADs used by the EJB objects in the application. The method takes one
parameter, a String value. If the application uses more than one transactional DAD,
separate the DAD names with a comma.

For example, to specify that the application uses DADs named “proj1” and “proj2”,
call the method as follows:

ad.setTxDads("proj1, proj2")

JTS-Enabled JDBC Driver
The JDBC driver that you use to access databases within a transaction must be JTS-
enabled (Java Transaction Service), such as the one that is shipped with Oracle
Application Server.

In JDBC, you use the getConnection() method in a DriverManager class to
open a connection to a database. The method takes a parameter that specifies a
database URL to locate and log into a database. The format of the database URL is
driver-specific.

When using the JTS-enabled JDBC driver, the database URL has one of the follow-
ing formats:

jdbc:oracle:jts7:@ <dadname>
jdbc:oracle:jts8:@ <dadname>
Transactions in EJB Objects 6-3

Declarative Transactions
The <dadname> specifies the name of a transactional DAD (database access
descriptor). See Chapter 10 “Enabling Transactions” in the Administrator’s Guide
for information on how to configure a DAD to be transactional.

By using DADs (instead of a connect string) in the database URL, you have to
know which databases are involved in the transaction. Note that transactional
DADs must have a valid username/password.

Declarative Transactions
When you use declarative transactions, you cause the EJB runtime to demarcate
transactions by setting deployment descriptor parameters on EJB objects. The EJB
runtime manages the transactions automatically as specified by the parameter
value set on each bean. The EJB runtime begins, commits, suspends, and rolls back
transactions when appropriate within the bean. For example, if you invoke a
method on a bean that is defined with the TX_REQUIRED property, the EJB runtime
begins the transaction when you enter the method and commits or rolls back the
transaction depending on if errors occurred when you exit the method.

Whether you use declarative or programmatic transactions is up to you. Program-
matic transactions require manual coding, while declarative transactions automate
most of the transaction demarcations for you.

Defining Declarative Transactions
To define declarative transactions for an EJB object, you perform the following
steps:

■ Specify the database to which to connect

■ Set the transaction attribute for the EJB object

■ Perform database operations

Note: The JTS-enabled driver is always in non-autocommit mode.
You do not have to explicitly set the mode in your EJB object. Also,
the JTS and OCI Oracle drivers are pre-registered in EJB applica-
tions. You do not have to use Class.forName() for the Driver-
Manager to locate the driver.
6-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Declarative Transactions
Connecting to the Database
To specify the database, you call the getConnection() method in the DriverMan-
ager class. More info is presented in “JTS-Enabled JDBC Driver” on page 6-3. The
following code illustrates the use of this method.

/* Connect to the Oracle 8 database using the DAD called DADNAME */
Connection conn = DriverManager.getConnection("jdbc:oracle:jts8:@DADNAME");

/* create a JDBC statement object */
Statement stmt = conn.createStatement();

You have to make the getConnection() call for each method that requires access
to the database. This call does not slow down your system because it does not set
up the connection from scratch. Instead it gets each connection from a pool. At the
end of each method, you return the connection to the pool using the close()
method.

Setting the Transaction Attribute
The transaction attribute specifies when a transaction begins. You set the attribute
for each object in its deployment descriptor using the setTransactionAt-
tribute() method in the javax.ejb.deployment.ControlDescriptor class to
one of the following values (see “Bean-Level Deployment Descriptors” on page 4-7
for descriptor information):
Transactions in EJB Objects 6-5

Declarative Transactions
The following table summarizes how the transaction attribute values affect the
transaction context:

Table 6–1 Transaction attributes for EJB objects

Attribute Description

TX_NOT_SUPPORTED Methods in the EJB object do not support declarative transactions
and will be executed outside of a transaction context. If a client
that is in a transaction context calls a method in a
TX_NOT_SUPPORTED object, the current transaction will be sus-
pended. The transaction is resumed when the method returns.

TX_REQUIRED If a client that is in a transaction context calls a method in a
TX_REQUIRED object, the transaction context will be used to exe-
cute the method. If the client is not in a transaction context, a new
transaction will be started and committed when the method com-
pletes.

TX_SUPPORTS If a client that is in a transaction context calls a method in a
TX_SUPPORTS object, the method is executed in the same trans-
action context. If the client is not in a transaction context, the
method is executed outside the scope of a transaction.

TX_REQUIRES_NEW If a client that is in a transaction context calls a method in a
TX_REQUIRES_NEW object, the current transaction is sus-
pended, and the method is executed in a new transaction context.
The new transaction is committed when the method completes.
The suspended transaction is resumed when the method com-
pletes.

If the client is not in a transaction scope, the transaction coordina-
tor begins a new transaction in which to execute the method and
commits the transaction when the method completes.

TX_MANDATORY A client must be in a transactional context to invoke a method in
a TX_MANDATORY object. Otherwise, the EJB object throws the
TransactionRequired exception to the client.

TX_BEAN_MANAGED Methods in the TX_BEAN_MANAGED object use the
javax.jts.UserTransaction object to demarcate transactions.
Setting the transaction attribute to TX_BEAN_MANAGED indi-
cates that the EJB object uses the programmatic transaction model.

If a client invokes the EJB object when the client is already in a
transaction context, the incoming transaction is suspended.
6-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Declarative Transactions
The following code sample shows how to set the transaction attribute of an EJB
object to TX_NOT_SUPPORTED. This code is found in the Java program you write
to create bean-level deployment descriptors.

ControlDescriptor cd = new ControlDescriptor(); // create a new
// ControlDescriptor object

cd.setTransactionAttribute(ControlDescriptor.TX_NOT_SUPPORTED);

Declarative Transaction Example
In this example, a client connects to and executes methods on an EJB bean named
“Payroll/DBProc”. This bean is configured as declarative transactional within the
deployment descriptor by setting the transaction attribute to TX_REQUIRED.
Whenever a client executes a method within the Payroll/DBProc object, the EJB
runtime will either continue within an existing transaction or, if no transaction is

Table 6–2 Transaction attributes (summary)

Value Client in tx context? Transaction context used

TX_NOT_SUPPORTED Yes None (client’s transaction is sus-
pended)

No None

TX_REQUIRED Yes Client’s

No New transaction context

TX_SUPPORTS Yes Client’s

No None

TX_REQUIRES_NEW Yes New transaction context (client’s
transaction is suspended)

No New transaction context

TX_MANDATORY Yes Client’s

No TransactionRequired excep-
tion thrown

TX_BEAN_MANAGED Yes Client’s transaction is suspended
(programmatic transaction)

No None (programmatic transaction)
Transactions in EJB Objects 6-7

Declarative Transactions
currently running, will begin a new transaction. This all occurs because the bean is
configured with the TX_REQUIRED attribute.

The Payroll/DBProc object contains two methods: updateEmployees() and update-
Managers(). The object is defined as TX_REQUIRED; so, both methods, when
invoked, will either start a new transaction or continue an existing transaction. If
the transaction was started within either method, the transaction is committed or
rolled back when the method completes. The developer designed the methods so
that the updateEmployees method is never called within a transaction; however,
the updateManagers() method can be called from within a transaction.

■ updateEmployees() —the method causes the EJB runtime to always begin
and commit a transaction.

■ updateManagers() —the method causes the EJB runtime to either begin a new
transaction or continue a transaction context. If the method is called from a cli-
ent directly, the object begins a new transaction. If called from updateEmploy-
ees() , the method uses the transaction context that was started in the caller
method.

If you are making changes within one or more databases, you must open a JTS-
enabled JDBC driver connection to a transactional DAD. The DAD, which identi-
fies the database, should be configured within the Oracle Application Server Man-
ager and specified as a property during deployment. The methods open a
connection manually to a JTS-enabled JDBC driver for the database connection by
prepending “jdbc:oracle:jts7:@” to the DAD name in the database URL in the get-
Connection() call.

The same example is modified slightly for programmatic transactions. See “Pro-
grammatic Transaction Example” on page 6-14.

Remote Interface for the EJB Object
// Remote interface for the EJB object
public interface DBInterface extends javax.ejb.EJBObject {

public void updateEmployees() throws java.rmi.RemoteException;
public void updateManagers() throws java.rmi.RemoteException;

}

EJB Object
// EJB object that implements DBInterface
import javax.ejb.*;

public class DBprocessing implements javax.ejb.SessionBean {
String url = null;
6-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Declarative Transactions
UserTransaction usertran = null;
SessionContext sessctx;

void setSessionContext(SessionContext ctx) {
// save the SessionContext
sessctx = ctx;

// save the transaction context
usertran = ctx.getUserTransaction();

// get the DAD name from the deployment descriptor and use it to
// form the URL for DriverManager.getConnection()
String dadname = ctx.getEnvironment().getProperty("DBName");
url = "jdbc:oracle:jts7:@" + dadName;
...

}

public void updateEmployees() {
// A new transaction begins automatically when you enter this method

 //Each method must retrieve a database connection
Connection db = DriverManager.getConnection(url);
PrepareStatement st = db....
st.executePrepared(...);

...
if (managers_need_to_be_updated) updateManagers();

 //return the database connection to the pool when closed
db.close();

 //The transaction commits or rolls back when method completes
}

 public void updateManagers() {
// If this method is called from updateEmployees(), the transaction
// begun in that method continues in this method. Statements
// are executed within the same transaction context.

// If this method is called from the client directly, a new
// transaction is started. This transaction is committed when this
// method completes.

 //Each method must retrieve a database connection
Connection db = DriverManager.getConnection(url);
Statement st = db.createStatement();

 st.execute(...);
 ...
Transactions in EJB Objects 6-9

Declarative Transactions
 //return the database connection to the pool when closed
db.close();

 //If the transaction was started in this method, the transaction
 //commits or rolls back when method completes; otherwise, returns
 //to transactional method that invoked this method.

}

public void ejbCreate() throws CreateException {
// creation tasks

}

public void ejbRemove() {
}

public void ejbActivate() {
// activation tasks

}

public void ejbPassivate() {
// passivation tasks

}

}

Client
public class Application {

String appServer = "oas://...";
DBInterface dbp = null;

public void doProcessing() {
// Set up JNDI
Hashtable env = new Hashtable();
env.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"oracle.oas.naming.jndi");
javax.naming.Context context = new InitialContext(env);
context = context.lookup(appServer);

DBHome dph = (DBHome) PortableRemoteObject.narrow(
context.lookup("Payroll/DBProc"),DBHome.class);

dbp = dph.create();
 ...
dbp.updateEmployees();
...
dbp.updateManagers();
6-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Declarative Transactions
...
dbp.destroy();
dbp = null;

 }

public void static main(String args[]) {
Application ap = new Application();
ap.doProcessing();

}
}

Deployment Descriptors
The descriptors for the EJB application contain the following information:

import javax.ejb.deployment.*;
import oracle.oas.ejb.deployment.*;
import javax.naming.CompositeName;
import java.util.Properties;
import java.io.*;
import java.lang.reflect.*;

public class PayrollDescriptor
{

public static void main(String[] args)
{

FileOutputStream fos;
ObjectOutputStream oos;

OASApplicationDescriptor ad = new OASApplicationDescriptor();
SessionDescriptor sd = new SessionDescriptor();
ControlDescriptor cd = new ControlDescriptor();
ControlDescriptor cdAll[] = new ControlDescriptor[1];

try
{

ad.setBeanHomeName (new CompositeName("Payroll")); // set application name
ad.setTxEnabled(true); // enable transactions
ad.setTxDads("payrolldad"); // set DADs used in the app

// write out the serialized descriptor for the application
fos = new FileOutputStream("payrollDeployment.ser");
oos = new ObjectOutputStream(fos);
oos.writeObject(ad);
oos.flush();
Transactions in EJB Objects 6-11

Declarative Transactions
sd.setEnterpriseBeanClassName("DBProcessing");// set the Java class of the
// bean to "DBProcessing"

// for the bean, set the DBName property to a DAD name
Properties p = new Properties();
p.put("DBName", "payrolldad");
sd.setEnvironmentProperties(p);

sd.setRemoteInterfaceClassName("DBInterface");// set remote interface of
// the bean to "DBInterface"

sd.setBeanHomeName(new CompositeName("DBProc")); // set the bean name
// to "DBProc"

// set the ControlDescriptors for the EJB application.
// cdAll is an array of ControlDescriptors, one cell for each bean. Since
// there is only one bean in this application, we just need a one-cell
// array.
cd.setTransactionAttribute(ControlDescriptor.TX_REQUIRED);
cdAll[0] = cd;
sd.setControlDescriptors(cdAll);

sd.setSessionTimeout(2000); // set the timeout to 2000 seconds
sd.setStateManagementType(sd.STATEFUL_SESSION); // set the session bean

// to stateful

// write out the serialized descriptor for the bean
fos = new FileOutputStream("dbprocDeployment.ser");
oos = new ObjectOutputStream(fos);
oos.writeObject(sd);
oos.flush();

}
catch (Exception e)
{

e.printStackTrace();
System.exit(1);

}
}

}

6-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Programmatic Transactions
Programmatic Transactions
Instead of demarcating transactions declaratively by setting properties on EJB
objects, you can demarcate transactions programmatically using the
javax.jts.UserTransaction object. You begin, commit, and roll back transac-
tions using methods in this object. To get a reference to this object, you call the
getUserTransaction() method in the SessionContext class.

The programmatic method requires you to understand the transactional protocols:
JTS (Java Transaction Service) and JDBC (Java Database Connectivity).

■ JTS —Enables you to define transactions that span databases, method invoca-
tions, and even EJB objects.

■ JDBC—JTS uses JDBC to access databases. If your transactions involve only
one database and can be completed within one method call, you can use a non
JTS-aware JDBC driver and you do not have to use JTS transactions. However,
if your transactions span multiple method invocations, are performed in collab-
oration with multiple objects, or span multiple databases, then you have to use
JTS and a JTS-aware JDBC driver.

The following code stores the transaction context in the usertran instance variable.

import javax.ejb.*;

public class myBean implements SessionBean {
SessionContext sessctx;
UserTransaction usertran = null;
String url = null;

void setSessionContext(SessionContext ctx) {
// save the SessionContext
sessctx = ctx;

// save the transaction context
usertran = ctx.getUserTransaction();

// get the DAD name from the deployment descriptor and use it to
// form the URL for DriverManager.getConnection()
String dadname = ctx.getEnvironment().getProperty("DBName");
url = "jdbc:oracle:jts7:@" + dadName;
...

}

void myOperation() {
 //Open a connection to a transactional database
Transactions in EJB Objects 6-13

Programmatic Transactions
Connection db = DriverManager.getConnection(url);
 //Begin the transaction

usertran.begin();

// database operations
PrepareStatement st = db....
st.executePrepared(...);

 //commit the changes within the transaction
usertran.commit();

 //return the JDBC database connection to the connection pool.
db.close();

}
}

All operations (including queries) on a JDBC database connection must be done
within a transaction; otherwise, the JTS-enabled driver throws an exception. Con-
necting, disconnecting, and other operations that do not involve querying or modi-
fying the database do not need to be executed within a transaction.

The exception to this rule is DDL (data definition language) operations. You have
to perform DDL operations (such as creating tables) outside of a JTS transaction;
these operations are always auto-committed.

The UserTransaction Object
The javax.jts.UserTransaction class supports the following methods:

■ begin()

■ commit()

■ rollback()

■ getStatus()

■ setRollbackOnly()

■ setTransactionTimeout()

Programmatic Transaction Example
The Payroll/DBProc object contains two methods: updateEmployees() and update-
Managers(). The object is defined as TX_REQUIRED; so, both methods, when
invoked, will either start a new transaction or continue an existing transaction. If
the transaction was started within either method, the transaction is committed or
rolled back when the method completes. The developer designed the methods so
6-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Programmatic Transactions
that the updateEmployees method is never called within a transaction; however,
the updateManagers() method can be called from within a transaction.

■ updateEmployees() —the object begins and commits a transaction within the
method.

■ updateManagers() —the object checks if it is currently in a transaction con-
text. It begins and commits a new transaction only if it is not currently in a
transaction context. If the object is currently in a transaction, the update opera-
tion is executed in the context of the current existing transaction.

If you are making changes within one or more databases, you must open a JTS-
enabled JDBC driver connection to a transactional DAD. The DAD, which identi-
fies the database, should be configured within the Oracle Application Server Man-
ager and specified as a property during deployment. The methods open a
connection manually to a JTS-enabled JDBC driver for the database connection by
prepending “jdbc:oracle:jts7:@” to the DAD name in the database URL in the get-
Connection() call.

The same example is modified slightly for declarative transactions. See “Declara-
tive Transaction Example” on page 6-7.

Remote Interface for the EJB Object
// Remote interface for the EJB object
public interface DBInterface extends javax.ejb.EJBObject {

public void updateEmployees() throws java.rmi.RemoteException;
public void updateManagers() throws java.rmi.RemoteException;

}

EJB Object
// EJB object that implements DBInterface
import javax.ejb.*;

public class DBprocessing implements javax.ejb.SessionBean {
String url = null;
UserTransaction usertran = null;
SessionContext sessctx;

void setSessionContext(SessionContext ctx) {
// save the SessionContext
sessctx = ctx;

// save the transaction context
usertran = ctx.getUserTransaction();
Transactions in EJB Objects 6-15

Programmatic Transactions
// get the DAD name from the deployment descriptor and use it to
// form the URL for DriverManager.getConnection()
String dadname = ctx.getEnvironment().getProperty("DBName");
url = "jdbc:oracle:jts7:@" + dadName;
...

}

public void updateEmployees() {
// get a connection from a pool
Connection db = DriverManager.getConnection(url);
usertran.begin(); // start new transaction
PrepareStatement st = db....
st.executePrepared(...);
...
if (managers_need_to_be_updated) updateManagers();

usertran.commit(); // commit transaction
db.close(); // return connection to the pool

 }

public void updateManagers() {
// get a connection from a pool
Connection db = DriverManager.getConnection(url);

// Verify if transaction is active
boolean newTransaction =

(usertran.getStatus() == usertran.STATUS_NO_TRANSACTION);
// Start transaction if needed
if (newTransaction) usertran.begin();
Statement st = db.createStatement();
st.execute(...);
...
// Commit transaction if started
if (newTransaction) usertran.commit(...);
// return connection to the pool
db.close();

}
}

6-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Programmatic Transactions
Client
public class Application {

String appServer = "oas://...";
DBInterface dbp = null;

public void doProcessing() {
// Set up JNDI
Hashtable env = new Hashtable();
env.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"oracle.oas.naming.jndi");
javax.naming.Context context = new InitialContext(env);
context = context.lookup(appServer);

DBHome dph = (DBHome) PortableRemoteObject.narrow(
initialContext.lookup("Payroll/DBProc"),DBHome.class);

dbp = dph.create();

dbp.updateEmployees();
...
dbp.updateManagers();
...
dbp.destroy();
dbp = null;

}

public void static main(String args[]) {
Application ap = new Application();
ap.doProcessing();

}
}

Deployment Descriptors
The descriptors for the EJB application contain the following information:

impo0rt javax.ejb.deployment.*;
import oracle.oas.ejb.deployment.*;
import javax.naming.CompositeName;
import java.util.Properties;
import java.io.*;
import java.lang.reflect.*;

public class PayrollDescriptor
{

public static void main(String[] args)
Transactions in EJB Objects 6-17

Programmatic Transactions
{
FileOutputStream fos;
ObjectOutputStream oos;

OASApplicationDescriptor ad = new OASApplicationDescriptor();
SessionDescriptor sd = new SessionDescriptor();
ControlDescriptor cd = new ControlDescriptor();
ControlDescriptor cdAll[] = new ControlDescriptor[1];

try
{

ad.setBeanHomeName (new CompositeName("Payroll")); // set application name
ad.setTxEnabled(true); // enable transactions
ad.setTxDads("payrolldad"); // set DADs used in the app

// write out the serialized descriptor for the application
fos = new FileOutputStream("payrollDeployment.ser");
oos = new ObjectOutputStream(fos);
oos.writeObject(ad);
oos.flush();

sd.setEnterpriseBeanClassName("DBProcessing");// set the Java class of the
// bean to "DBProcessing"

// for the bean, set the DBName property to a DAD name
Properties p = new Properties();
p.put("DBName", "payrolldad");
sd.setEnvironmentProperties(p);

sd.setRemoteInterfaceClassName("DBInterface");// set remote interface of
// the bean to "DBInterface"

sd.setBeanHomeName(new CompositeName("DBProc")); // set the bean name
// to "DBProc"

// set the ControlDescriptors for the EJB application.
// cdAll is an array of ControlDescriptors, one cell for each bean. Since
// there is only one bean in this application, we just need a one-cell
// array.

cd.setTransactionAttribute(ControlDescriptor.TX_BEAN_MANAGED);
cdAll[0] = cd;
sd.setControlDescriptors(cdAll);
6-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Transactions and Threads
sd.setSessionTimeout(2000); // set the timeout to 2000 seconds
sd.setStateManagementType(sd.STATEFUL_SESSION); // set the session bean

// to stateful

// write out the serialized descriptor for the bean
fos = new FileOutputStream("dbprocDeployment.ser");
oos = new ObjectOutputStream(fos);
oos.writeObject(sd);
oos.flush();

}
catch (Exception e)
{

e.printStackTrace();
System.exit(1);

}
}

}

Transactions and Threads
Transactions are associated with threads. In one thread, you can have only one
active transaction at any time. This means that you cannot begin another transac-
tion until the current transaction is completed. Normally, you would suspend the
current transaction to start a second transaction before committing the first. How-
ever, at this time, Oracle Application Server EJB does not support suspending and
resuming transactions.

The association between transactions and threads is very tight. A transaction can
only be committed or rolled back on the same thread that started it, and all opera-
tions within the transaction must be invoked from the same thread. You cannot cre-
ate additional threads of execution within a transaction. You can have your bean
call other beans within the scope of the transaction as long as the original transac-
tional bean commits the transaction.

If the invoked bean is defined to accept the current transaction context, the transac-
tion continues uninterrupted. If your bean was declared as TX_REQUIRES_NEW,
the normal response would be for the EJB runtime to start a subtransaction within
the current transaction. However, EJB does not currently support subtransactions.
Any call from a bean with an existing transaction to a bean with
TX_REQUIRES_NEW causes the transaction to be rolled back (see Figure 6–1). No
exceptions are currently logged to flag for this situation; you must verify that none
of your method invocations cause this type of scenario.
Transactions in EJB Objects 6-19

Transactions for Stateful and Stateless Objects
Figure 6–1 Transactional Error Condition

Transactions in the EJB model in Oracle Application Server can be initiated only by
EJB objects. They cannot be initiated by clients outside the application server.

Transactions for Stateful and Stateless Objects
There may be a situation where your client needs to make several calls to the object
within the same transaction. You can do this with a stateful bean that has been con-
figured with the TX_BEAN_MANAGED mode. Because stateful objects are used by
a single client only, you can design the object such that its transactions span multi-
ple client calls. For stateless objects, each transaction has to be completed when the
method completes. Stateless objects cannot have transactions that span multiple cli-
ent calls.

When a stateful object is TX_BEAN_MANAGED, you can begin the transaction in
one method within the bean and commit the transaction within another method in
the bean. Both methods must be within the same bean. The client can invoke the
method with the begin to start the transaction. Then, the client invokes other meth-
ods within the bean, which will all be a part of the transaction. Finally, the client
invokes the method with the commit to finish the transaction. This enables the cli-
ent to make several method calls within the stateful bean for a single transaction.

Example 6–1 Stateful and TX_BEAN_MANAGED object

The following example defines a stateful bean that is defined as
TX_BEAN_MANAGED transactional. The bean is designed so that the client can
start the transaction by invoking beginTransaction() , invoke other methods
within the transaction, such as updateEmployees() , and finally, commit the trans-
action by invoking commitTransaction().

Remote Interface for the JCORBA Object
// Remote interface for the JCORBA object
public interface DBInterface extends javax.ejb.EJBObject {

public void updateEmployees() throws java.rmi.RemoteException;
public void updateManagers() throws java.rmi.RemoteException;

}

bean2-
TX_REQUIRES_

NEW

bean1-
TX_REQUIRED
6-20 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Transactions for Stateful and Stateless Objects
JCORBA Object
// JCORBA object that implements DBInterface
import javax.ejb.*;

public class DBprocessing implements javax.ejb.SessionBean {
String url = null;
UserTransaction usertran = null;
SessionContext sessctx;

void setSessionContext(SessionContext ctx) {
// save the SessionContext
sessctx = ctx;

// save the transaction context
usertran = ctx.getUserTransaction();

// get the DAD name from the deployment descriptor and use it to
// form the URL for DriverManager.getConnection()
String dadname = ctx.getEnvironment().getProperty("DBName");
url = "jdbc:oracle:jts7:@" + dadName;
...

}

public void beginTransaction() {
usertran.begin(); // start new transaction

}

public void updateEmployees() {
// get a JDBC database connection from a pool
Connection db = DriverManager.getConnection(url);
PrepareStatement st = db....
st.executePrepared(...);
...
db.close(); // return connection to the pool

 }

public void commitTransaction() {
usertran.commit(); // commit transaction

}

Client
public class Application {

String appServer = "oas://...";
DBInterface dbp = null;
Transactions in EJB Objects 6-21

Transactions for Stateful and Stateless Objects
public void doProcessing() {
// Set up JNDI
Hashtable env = new Hashtable();
env.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"oracle.oas.naming.jndi");
javax.naming.Context context = new InitialContext(env);
context = context.lookup(appServer);

DBHome dph = (DBHome) PortableRemoteObject.narrow(
initialContext.lookup("Payroll/DBProc"),DBHome.class);

dbp = dph.create();

dbp.beginTransaction();
dbp.updateEmployees();

...
dbp.commitTransaction();
dbp.destroy();
dbp = null;

}

public void static main(String args[]) {
Application ap = new Application();
ap.doProcessing();

}
}

Deployment Descriptors
The descriptors for the EJB application contain the following information:

impo0rt javax.ejb.deployment.*;
import oracle.oas.ejb.deployment.*;
import javax.naming.CompositeName;
import java.util.Properties;
import java.io.*;
import java.lang.reflect.*;

public class PayrollDescriptor
{

public static void main(String[] args)
{

FileOutputStream fos;
ObjectOutputStream oos;
6-22 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Transactions for Stateful and Stateless Objects
OASApplicationDescriptor ad = new OASApplicationDescriptor();
SessionDescriptor sd = new SessionDescriptor();
ControlDescriptor cd = new ControlDescriptor();
ControlDescriptor cdAll[] = new ControlDescriptor[1];

try
{

ad.setBeanHomeName (new CompositeName("Payroll")); // set application name
ad.setTxEnabled(true); // enable transactions
ad.setTxDads("payrolldad"); // set DADs used in the app

// write out the serialized descriptor for the application
fos = new FileOutputStream("payrollDeployment.ser");
oos = new ObjectOutputStream(fos);
oos.writeObject(ad);
oos.flush();

sd.setEnterpriseBeanClassName("DBProcessing");// set the Java class of the
// bean to "DBProcessing"

// for the bean, set the DBName property to a DAD name
Properties p = new Properties();
p.put("DBName", "payrolldad");
sd.setEnvironmentProperties(p);

sd.setRemoteInterfaceClassName("DBInterface");// set remote interface of
// the bean to "DBInterface"

sd.setBeanHomeName(new CompositeName("DBProc")); // set the bean name
// to "DBProc"

// set the ControlDescriptors for the EJB application.
// cdAll is an array of ControlDescriptors, one cell for each bean. Since
// there is only one bean in this application, we just need a one-cell
// array.

cd.setTransactionAttribute(ControlDescriptor.TX_BEAN_MANAGED);
cdAll[0] = cd;
sd.setControlDescriptors(cdAll);

sd.setSessionTimeout(2000); // set the timeout to 2000 seconds
 // set the session bean to stateful

sd.setStateManagementType(sd.STATEFUL_SESSION);

// write out the serialized descriptor for the bean
fos = new FileOutputStream("dbprocDeployment.ser");
oos = new ObjectOutputStream(fos);
Transactions in EJB Objects 6-23

Transactions for Stateful and Stateless Objects
oos.writeObject(sd);
oos.flush();

}
catch (Exception e)
{

e.printStackTrace();
System.exit(1);

}
}

}

6-24 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating to OAS 4.0.8 EJB A
7

Migrating to OAS 4.0.8 EJB Applications

Contents
You can migrate the following applications to EJB by following instructions listed
in this chapter:

■ Migrating OAS 4.0.7 JCORBA Applications

■ Migrating Enterprise CORBA Objects (ECO/Java)

■ Migrating OAS 4.0.7 EJB Applications—moves your EJB applications toward
EJB 1.0 compliance.

Migrating OAS 4.0.7 JCORBA Applications
Migrating OAS 4.0.7 JCORBA applications to OAS 4.0.8 requires source code
changes. The component model of Oracle Application Server now provides EJB 1.0
home and remote interfaces, as well as complete JNDI support.

Migration for OAS 4.0.7 JCORBA applications includes the following:

■ Transforming the Remote Interface

■ Creating Home Interfaces

■ Transforming the JCORBA Object Implementation

■ Making your Parameters Serializable

■ Converting JCO.APP to EJB Deployment Descriptors

In addition, you need to modify any clients that access 4.0.7 JCORBA applications.
See “Migrating 4.0.7 JCORBA Clients” on page 7-12 for information.
pplications 7-1

Migrating OAS 4.0.7 JCORBA Applications
Transforming the Remote Interface
In the remote interface for the JCORBA object:

■ Convert all occurrences of org.omg.CORBA.Object or
oracle.oas.jco.JCORemote to javax.ejb.EJBObject .

■ Throw the java.rmi.RemoteException exception for all methods in the
interface.

The following table compares the differences between a JCORBA remote interface
and an EJB remote interface:

Creating Home Interfaces
The OAS 4.0.7 JCORBA component in Oracle Application Server did not require
JCORBA objects to have home interfaces. You need to create a home interface for
each migrated object, which must extend javax.ejb.EJBHome .

Table 7–1 Converting remote interface

JCORBA remote interface EJB remote interface

package myStack;

public interface ServerStackRemote
extends oracle.oas.jco.JCORemote

{
 public int getStackSize();

 public void setStackSize(int size)
throws StackException;

 public void push(String value)
throws StackException;

 public String pop()
throws StackException;

}

package myStack;

public interface ServerStackRemote
extends javax.ejb.EJBObject

{
 public int getStackSize()

throws java.rmi.RemoteException ;

 public void setStackSize(int size)
throws StackException,

java.rmi.RemoteException ;

 public void push(String value)
throws StackException,

java.rmi.RemoteException ;

 public String pop()
throws StackException,

java.rmi.RemoteException ;
}

7-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating OAS 4.0.7 JCORBA Applications
Transforming the JCORBA Object Implementation
In the class for JCORBA objects:

■ Change import oracle.oas.jco.* to import oracle.oas.ejb.* .

■ Check that the class implements javax.ejb.SessionBean . The JCORBA
Lifecycle is not supported within EJB; if the JCORBA object implements
oracle.oas.jco.Lifecycle , you have to remove it.

■ Move any initialization operations to the ejbCreate() method. In addition,
you should save the session context passed into the setSessionContext
method in an instance variable.

■ Change any ObjectManager type with SessionContext type. Table 7–2 maps the
methods in the ObjectManager class to methods in the SessionContext class.

■ Check that all public methods in the object class throw the java.rmi.Remo-
teException exception.

The following table shows code that changed when migrating JCORBA objects to
EJB objects:

Table 7–2 Methods in SessionContext and ObjectManager classes

SessionContext ObjectManager

getEnvironment() getEnvironment()

Parameter passed to
setSessionContext()

getObjectManager()

getEJBObject() getSelf()

getEJBObject().remove() revokeSelf()

Obtain from JNDI as
"oas_service:logger"

getLogger()

getUserTransaction() getCurrentTransaction()
Migrating to OAS 4.0.8 EJB Applications 7-3

Migrating OAS 4.0.7 JCORBA Applications
Table 7–3 Converting JCORBA objects to EJB objects

JCORBA EJB

package myStack;
import oracle.oas.jco.* ;
import java.util.Properties;

public class ServerStack
implements Lifecycle

{
 private int stackSize = 0;
 private String stackElements[];
 private int top = -1;
 private ObjectManager mgr = null;

private Logger logger = null;

package myStack;
import javax.ejb.* ;
import oracle.oas.ejb.* ;
import java.util.Properties;
import javax.naming.*;

public class ServerStack implements
javax.ejb.SessionBean

{
 private int stackSize = 0;
 private String stackElements[];
 private int top = -1;
 private SessionContext osc = null;
 private Logger logger = null;
7-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating OAS 4.0.7 JCORBA Applications
public void jcoCreate () {

mgr = ObjectManager.
getObjectManager(this);

logger = mgr.getLogger();
logger.setSeverity(Logger.

LOG_SEVERITY_DEBUG);

try {
 Properties env =

mgr.getEnvironment();

setStackSize(Integer.parseInt(
env.getProperty(
"initialStackSize")));

}
catch (Exception e) {}

}

 public void setSessionContext (
 SessionContext ctx)
 {
 osc = ctx;
 }

 public void ejbCreate ()
 throws CreateException
 {
 try
 {
 Context ctx = new
 InitialContext();

// logger is now a service
 logger = (oracle.oas.ejb.Logger)
ctx.lookup ("oas_service:logger");
 logger.setSeverity
(oracle.oas.ejb.Logger.LOG_SEVERITY_DE
BUG);

 Properties env =
osc.getEnvironment();

setStackSize(Integer.parseInt(env.getP
roperty("initialStackSize")));
 }
 catch (Exception e)
 {
 e.printStackTrace (System.out);
 throw new CreateException
(e.getMessage());
 }
 }

Table 7–3 Converting JCORBA objects to EJB objects

JCORBA EJB
Migrating to OAS 4.0.8 EJB Applications 7-5

Migrating OAS 4.0.7 JCORBA Applications
public void ejbRemove () {
}

public void ejbPassivate () {
logger = null;

}

public void ejbActivate () {
 logger = (Logger)
 (new initialContext()).
 lookup("oas_service:logger");

}

public int getStackSize()
 {

logger.println(" Getting
stack size...");

 return stackSize;
 }

public int getStackSize()
 {

logger.println(" Getting
stack size...");

 return stackSize;
 }

 public void setStackSize(int size)
throws StackException

 {
if (size < 0)

 throw new StackException();
 logger.println(" Setting stack

size to " + size + "...");
 stackSize = size;
 stackElements = new String[size];
 }

 public void setStackSize(int size)
throws StackException

 {
if (size < 0)

 throw new StackException();
 logger.println(" Setting stack

size to " + size + "...");
 stackSize = size;
 stackElements = new String[size];
 }

Table 7–3 Converting JCORBA objects to EJB objects

JCORBA EJB
7-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating OAS 4.0.7 JCORBA Applications
Making your Parameters Serializable
The EJB 1.0 specification requires that all parameters are serializable. Any class
being passed as a parameter or as a value within a parameter must be changed to
implement Serializable .

Converting JCO.APP to EJB Deployment Descriptors
You write deployment information for JCORBA applications in the JCO.APP file,
but for EJB applications the deployment information is in the form of serialized
objects. To convert deployment information from JCO.APP to the serialized objects,
you do the following:

1. Modify your JCO.APP file—Since a home interface is now mandatory, you
need to add a statement to the JCO.APP file to specify the home interface
name as shown in the [ServerStack] section below.

[APPLICATION]
name = myStack

public void push(String value)
throws StackException

{
if (top == stackSize - 1)

 throw new StackException();
 logger.println(" Pushing \"" +

value + "\" onto the stack...");
 stackElements[++top] = value;

}

public void push(String value)
throws StackException

{
if (top == stackSize - 1)

 throw new StackException();
 logger.println(" Pushing \"" +

value + "\" onto the stack...");
 stackElements[++top] = value;

}

public String pop() throws
StackException

 {
if (top == -1)

 throw new StackException();
 logger.println(" Popping the

stack (returning element " +
stackElements[top] + ")...");

 return stackElements[top--];
 }
}

public String pop() throws
StackException

 {
if (top == -1)

 throw new StackException();
 logger.println(" Popping the

stack (returning element " +
stackElements[top] + ")...");

 return stackElements[top--];
 }
}

Table 7–3 Converting JCORBA objects to EJB objects

JCORBA EJB
Migrating to OAS 4.0.8 EJB Applications 7-7

Migrating OAS 4.0.7 JCORBA Applications
idleTimeOut = 2000

[ServerStack]
className = myStack.ServerStack
remoteInterface = myStack.ServerStackRemote
homeInterface = myStack.ServerStackHome #add this statement

[ServerStack.ENV]
; property used by the ServerStack object
initialStackSize = 10

2. Remove parameters that are not supported in ECO/Java

The following JCO.APP parameters are no longer supported in ECO/Java.
These parameters will need to be removed from your newly created ECO.APP.

Application Section

Object Section

Table 7–4 Application properties

Property Description

minThreads The minimum number of threads that can access JCORBA objects in
a JCORBA server process. The number of threads determines the
number of requests that an object can handle at the same time.

Default: 1

maxThreads The maximum number of threads that can access JCORBA objects in
a JCORBA server process. If there are more object instances than
threads, then requests will have to wait until a thread is available.

Default: 10

Table 7–5 Object properties

Property Description

minInstances The number of object instances that the application server starts up
in a JCORBA server process when the process starts up.

This property can be specified at the object level or at the application
level. If specified in both places, the value specified at the object
level takes precedence.

The default is 0.
7-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating OAS 4.0.7 JCORBA Applications
3. Once you’ve modified the JCO.APP file, use the jco2ejb utility to create the seri-
alized deployment objects.

The jco2ejb utility generates the following:

■ An application-level deployment descriptor. The name of this file is the value
of the name field in the [Application] section of the JCO.APP file concate-
nated with “Deployment.ser”. For example, if you have a JCORBA application
named myStack, the EJB application descriptor is in a file called MyStackDe-
ployment.ser.

maxInstances The maximum number of object instances that a JCORBA server pro-
cess can hold. The number of instances increases as the process
receives requests.

This property can be specified at the object level or at the application
level. If specified in both places, the value specified at the object
level takes precedence.

The default is 10.

minThreads The minimum number of threads in a JCORBA server process. Each
object instance uses exactly one thread.

This property can be specified at the object level or at the application
level. If specified in both places, the value specified at the object
level takes precedence.

The default is 1.

maxThreads The maximum number of threads in a JCORBA server process. If
there are more object instances than threads, then requests will have
to wait until a thread is available.

This property can be specified at the object level or at the application
level. If specified in both places, the value specified at the object
level takes precedence.

The default is 10.

poolSize The number of objects of this type that the pool can hold. The pool
size should be smaller than or equal to the maximum number of
instances.

Default: 0

Table 7–5 Object properties

Property Description
Migrating to OAS 4.0.8 EJB Applications 7-9

Migrating OAS 4.0.7 JCORBA Applications
■ For each object specified in the JCO.APP file, one bean-level deployment
descriptor. The name of the bean descriptor is the name of the object concate-
nated with “Deployment.ser”. For example, if you have a bean called Server-
Stack, the bean descriptor is in a file called ServerStackDeployment.ser.

■ A manifest file called MANIFEST.MF. This file contains the entries for all the
generated bean-level descriptors and the application descriptor. This file is
meant to be used when you create the ejb-jar file using the jar command with
the -m option.

The syntax for running jco2ejb is:

prompt> jco2ejb JCO.APP

For example, if you run jco2ejb on the following JCO.APP file:

[APPLICATION]
name = myStack
idleTimeOut = 2000

[ServerStack]
className = myStack.ServerStack
remoteInterface = myStack.ServerStackRemote
you need to add this statement
homeInterface = myStack.ServerStackHome

[ServerStack.ENV]
; property used by the ServerStack object
initialStackSize = 10

you would get the following files:

■ myStackDeployment.ser. This application-level deployment descriptor file is a
serialized instance of the class OASApplicationDescriptor. It specifies the appli-
cation name as “myStack”, and it sets the session timeout value to 2000.

■ ServerStackDeployment.ser. This bean-level deployment descriptor file is a
serialized instance of the class OASApplicationDescriptor. It specifies the bean
name as “ServerStack”, the class for the bean as “myStack.ServerStack”, a
home interface class of “myStack.ServerStackHome”, and a remote interface
class of “myStack.ServerStackRemote”. It also sets the Environment Property to
a property object containing the name/value pair “initialStackSize = 20”.
7-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating OAS 4.0.7 JCORBA Applications
■ MANIFEST.MF. This manifest file contains the entries for the two deployment
descriptors above, along with the EJB parameters. The manifest file looks like:

Manifest-Version: 1.0

Name: myStackDeployment.ser
OAS-Application: True

Name: ServerStackDeployment.ser
Enterprise-Bean: True

The following table shows the mappings between the JCO.APP text file and the
methods in the application-level deployment descriptor.

The following table shows the mappings between the JCO.APP text file and the
methods in the bean-level deployment descriptors.

Table 7–6 Mapping for application descriptors

Parameter in JCO.APP Parameter in descriptor

name setBeanHomeName()

idleTimeOut setSessionTimeout()

minInstances setMinInstances()

maxInstances setMaxInstances()

Table 7–7 Mapping for bean descriptors

Parameter in JCO.APP Parameter in descriptor

idleTimeOut (application-level only) setSessionTimeout()

stateless setStateManagementType()

[<object>] setBeanHomeName()

className setEnterpriseBeanClassName()

Name-value pairs in the [<object>] section setEnvironmentProperties()

remoteInterface setRemoteInterfaceClassName()

transactionMode (bean-level only) setTransactionAttribute()
Migrating to OAS 4.0.8 EJB Applications 7-11

Migrating Enterprise CORBA Objects (ECO/Java)
Migrating 4.0.7 JCORBA Clients
In clients, do the following:

■ If you are using ObjectFactory to get object references, replace ObjectFactory
with JNDI.

■ Add the following import statements to the client:

import javax.naming.*;
import java.util.Hashtable;

■ Remove any LifeCycle interface.

■ Catch the java.rmi.RemoteException exceptions that are now thrown by
your remote objects.

Migrating Enterprise CORBA Objects (ECO/Java)
One of the reasons for writing ECO/Java applications instead of EJB applications is
accessibility from other languages, besides Java. Since passing objects by value is a
feature only available to Java, EJBs can not be accessed at this time from non-Java
clients.

As the CORBA technology changes, you may decide to migrate your ECO/Java
application to EJB. This migration can be simple since the lifecycle of both APIs is
the same. The following sections explain how to write your ECO/Java application
in a way that the conversion to EJB can occur through a conversion tool.

1. Providing the Remote and Home Interfaces

Provide the remote and home interface that extends ECOObject or ECOHome.
Each interface must throw the exception type java.rmi.RemoteException
for every method in each interface.

2. Providing the following within your ECO/Java Object Implementation:

■ Import statement oracle.oas.eco.*

■ Use the appropriate classes that begin with "ECO".

In ECO/Java applications, communication exceptions need not be managed
explicitly. For EJB applications, the contrary is true. Hence, for each method
invocation made from clients to EJB objects, the following modifications must
be made for each situation specified:
7-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating Enterprise CORBA Objects (ECO/Java)
■ A method invocation is not inside a try block.

Throw the exception java.rmi.RemoteException at the method signature
provided the signature of any interface implemented by this class is not vio-
lated. Otherwise, just add a try block around the method.

■ A try block catches the exception org.omg.CORBA.SystemException or
one of its subclasses.

Replace the exception or its subclass with the exception java.rmi.Remote-
Exception or the corresponding subclass. The mapping between CORBA and
RMI exceptions and their subclasses is specified in the RMI/IIOP specifications.

■ A try block contains a catch clause for java.lang.RuntimeException .

Add, before the above catch clause, a catch clause for java.rmi.Remote-
Exception . This new clause should have a body similar to the
java.lang.RuntimeException clause.

■ A try block does not contain a catch clause for java.lang.Exception .

Add a catch clause for java.rmi.RemoteException to the try block. The
body of this clause should throw the exception java.lang.RuntimeExcep-
tion with the same message as in java.rmi.RemoteException .

Migrating OAS ECO/Java Clients
For any method name invoked on an object of a type that is part of the JCORBA
API, replace any occurrence of the string “ECO” with “EJB”.

Converting ECO.APP to EJB Deployment Descriptors
To convert an ECO.APP file to EJB deployment descriptors, run the eco2ejb utility
as described on page 7-7. Note that the home interface is already specified in the
ECO.APP file.
Migrating to OAS 4.0.8 EJB Applications 7-13

Migrating OAS 4.0.7 EJB Applications
Migrating OAS 4.0.7 EJB Applications
Perform the following modifications:

■ EJBHome interface must be implemented.

■ Use JNDI to access the home interface. The object returned by JNDI is the home
interface and not a new instance of a bean. Hence, you need to narrow the refer-
ence returned by JNDI to the appropriate home interface using “PortableRe-
moteObject.narrow(<reference>,<home class>) ”.

See Chapter 5, “Developing Clients for EJB Applications” for JNDI access
semantics.

■ Remove any mention of OASSessionDescriptor from deployment descrip-
tors as it is deprecated and not supported.

■ The definition of OASApplicationDescriptor has changed. Any serialized
deployment descriptors has to be regenerated.
7-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Deploying Applications Using
8

Deploying Applications Using oasdeploy

The oasdeploy utility provides remote and site-wide deployment of EJB and ECO/
Java applications in an Oracle Application Server site. This chapter describes how
you can use the utility.

Contents
■ Overview of oasdeploy

■ oasdeploy Syntax

■ Deployment Scenarios

■ Downloading to a Client

■ Security

Overview of oasdeploy
The oasdeploy utility is a command line tool that allows the deployment of ECO/
Java and EJB applications from any client machine to any node in a site. Oracle
Application Server is not required to be started for this utility to deploy an applica-
tion; only the node manager is required to be started.

■ Primary node—This utility uses the HTTP protocol to transmit the applica-
tion’s JAR file to the primary node through the node manager listener. You

Note: When you use this utility for deploying your applications,
you must reload the application server by doing two things: a Shift-
Reload on the browser and clicking the Reload button within the
application server GUI. This causes your application to be reloaded
correctly.
 oasdeploy 8-1

oasdeploy Syntax
must deploy the JAR file on the primary node before you can deploy the appli-
cation on either a remote or client node.

■ Remote nodes—oasdeploy can be used to further propagate the application to
all cartridge nodes or a specific node in a multi-node site.

■ Clients—The oasdeploy utility can also be used to download a client JAR file
from the primary node to a client machine. This allows client machines that are
not part of an Oracle Application Server website to manage application deploy-
ment. Once the JAR file is deployed within the application server, the client
machine can access the deployed application. Refer to the section “Download-
ing Client JAR File” on page 8-8 for more information.

oasdeploy Syntax
To deploy an application, the following syntax is used:

oasdeploy -u <username> /[<password>]@<hostname> : <port_number>
[-j <JAR filename> | -a <application_name>]

 [-t eco4j | ejb]
[-h] [-v] [-f] [-r] [-s]
[-d <application_display_name>]
[-rem < application_name >]

Deploying on the Primary Node
To deploy the JAR file on the primary node, the following options are used:

oasdeploy -u <username> /[<password>]@<hostname> : <port_number>
-j <JAR filename>

 [-t eco4j | ejb]
[-s]

Note: Before running oasdeploy, the node manager listeners
must be running.

Note: The -j is required when deploying on a primary node; the -
a is required when deploying on a remote node or a client. Both -a
and -j are required when deploying an EJB JAR file that does not
include the OASApplicationDescriptor. In this case, the manifest
file and serialized descriptors do not contain the name of the appli-
cation. You must define the application name at deployment time.
8-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

oasdeploy Syntax
Once the JAR file is deployed on the primary node, the application can be deployed
on either remote nodes or a client.

Deploying on a Remote Node
To deploy an application to a remote node after it has been deployed and registered
on the primary node, the following syntax is used:

oasdeploy -a <application_name>
 -u <username> /[<password>]@<hostname> : <port_number>

-n <username> /[<password>]@<hostname> : <port_number>

Deploying on a Client
To download the JAR file containing client stubs, the following syntax is used:

oasdeploy -a <application_name>
 -u <username> /[<password>]@<hostname> : <port_number>

-c <client_directory>

Removing the Application from the Primary Node
To remove an application from the primary node or the entire site, the following
syntax is used:

oasdeploy -rem < application_name >
-u <username> /[<password>]@<hostname> : <port_number>
-s

Removing the Application from a Remote Node
To remove an application from a particular cartridge node, the following syntax is
used:

oasdeploy -rem < application_name >
-n <username> /[<password>]@<hostname> : <port_number>
-u <username> /[<password>]@<hostname> : <port_number>

Syntax Table
The following table describes the options available.
Deploying Applications Using oasdeploy 8-3

oasdeploy Syntax
Table 8–1 oasdeploy options

Option Argument Description

-u|-user <username>/
[<password>]
@<hostname>:
<port_number>

Specifies the username and password of the
node manager of the primary node of the site
specified by <hostname> and <port_number>. If
<password> is not specified, a prompt for it will
appear. This option is REQUIRED.

-j|-jar <JAR filename> Specifies the application JAR file to be deployed.
This option is REQUIRED for deployment on
the primary node.

-a|-app <application_name> Specifies the application name as stated in the
application descriptor. This option is
REQUIRED when deploying on remote or client
nodes or when removing the application.

For EJB, the application name is within an Ora-
cle-specific descriptor, OASApplicationDescrip-
tor. If your EJB application did not define this
descriptor, the application name will be created
for you. Examine the GUI to find out the name
for the deployed EJB application.

-t|-type ECO4J | EJB Specifies the application type, EJB or ECO/Java.
Other types will be supported in future. If this
option is not specified, ECO4J is assumed.

-h|-help Displays all command line options.

-v|-verbose Enables verbose mode. Messages are displayed.

-f|-force This option is used to redeploy an existing appli-
cation. When it is specified, the previous applica-
tion will be overwritten by this new version.
Without this option, you cannot install the same
application again.

-r|-registernot Disables the registration of an application. Use
this option when you want to update the JAR
file of an application without changing its config-
uration. You should only use this option when
no changes were made to the number, type, or
transactional behavior of the components of the
application.
8-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Deployment Scenarios
Deployment Scenarios
This section provides several scenarios where you can use oasdeploy. These scenar-
ios are:

■ Deploying on a Primary Node

-d|-displayname <application_
display_name>

Specifies the name to be displayed in the Oracle
Application Server Manager applet tree.

-s|-site Specifies that an application is to be deployed on
all cartridge nodes in a site. By default, an appli-
cation is deployed only on the primary node.

-n|-node <username>/
[<password>]
@<hostname>:
<port_number>

Specifies the node manager of the remote node
where the deployed application needs to be
propagated. If <hostname> is not a valid node
name, an error is propagated back to the node
invoking oasdeploy. If <password> is not speci-
fied, a prompt for it will appear at that node.

The -n argument must be used with the -u argu-
ment. Deployment requires authentication on
both the primary and remote nodes.

This argument assumes that the application has
already been deployed on the primary node.

-c|-client <client_directory> Specifies the directory on the client machine
where the downloaded client JAR file containing
stubs should be located. This option is specified
when oasdeploy is used for downloading an
application’s client JAR from the primary node
to a client machine. It must be used with the -a
and -u options only.

-rem|-remove <application_name> Specifies that an application should be removed
from either a primary node, a particular remote
node or the entire site. This option must be used
with the -u argument. The -site or -n arguments
may also be used.

When used with -n, this argument does not
deregister an application from the primary node,
only the specified remote node is affected.

Table 8–1 oasdeploy options

Option Argument Description
Deploying Applications Using oasdeploy 8-5

Deployment Scenarios
■ Deploying on Remote Nodes

■ Redeploying Existing Applications

■ Deploying on a New Node

■ Removing Existing Applications

Deploying on a Primary Node
By default, oasdeploy deploys an application on the primary node of a site. The fol-
lowing example deploys the EJB myStack application on the primary node, which
is node1.

oasdeploy -u admin/adminpasswd@node1:8888 -j myStack.jar -t EJB

Deploying on Remote Nodes
You can specify the application to be deployed on a specific remote node or all
nodes in a site. For the former case, use the -n option; for the latter case, use -s .

As an example, the following command deploys the EJB application myStack on
the remote node named node24 (the primary node of the site is node1):

oasdeploy -a myStack -u admin/adminpasswd@node1:8888
-n admin_node24/passwd@node24:8888

To deploy a ECO application Stack/myStack1 on all nodes in a site:

oasdeploy -a Stack/myStack1 -u admin/adminpasswd@node1:8888 -j myStack1.jar -s

An application’s name space is hierarchical. If “Stack/myStack1” is a deployed
application name, “Stack” cannot be used as another application name to be
deployed in the same site. Conversely, if “Stack” is the name of a deployed applica-
tion, “Stack/myStack1” cannot be used as another application’s name in the same
site.

Redeploying Existing Applications
If you change the logic in your application objects, you need to upgrade your appli-
cation by redeploying it. By default, oasdeploy does not redeploy applications that

Note: Applications must already be deployed on the primary
node before they can be deployed on a remote node.
8-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Downloading to a Client
already exist in a site. You need to use the -f option to enable the utility to gener-
ate new server and client JAR files to replace the existing files.

The application is also re-registered on the site manager unless the -r option is
specified. Note that re-registration replaces the existing configuration information
for your application.

The example below redeploys the ECO application myStack without re-registering
the application:

oasdeploy -a myStack -u admin/adminpasswd@node1:8888 -j myStack.jar -f -r

Deploying on a New Node
To deploy an existing application on a newly added node, use the -n option as fol-
lows (node100 is the new node):

oasdeploy -a myStack -u admin/adminpasswd@node1:8888 -j myStack.jar
-n admin100/admin100passwd@node100:8888

Removing Existing Applications
You can use oasdeploy to remove previously deployed applications. For example:

oasdeploy -rem mystack -u admin/adminpasswd@node1:8888

unregisters the application myStack and its files from the primary node.

To remove the application from a remote node, the following syntax can be used:

oasdeploy -rem myStack -n admin100/admin100passwd@node100:8888

Once an application has been removed from a primary node, oasdeploy cannot
remove it from remote nodes. To remove an application from all nodes in a site, use
the following syntax:

oasdeploy -rem myStack -u admin/adminpasswd@node1:8888 -s

Downloading to a Client
You can use oasdeploy to allow client machines that are not part of the Oracle
Application Server site to manage application deployment remotely. This reduces
the need for remote logins into the primary node when command line deployment
is desired.
Deploying Applications Using oasdeploy 8-7

Security
In order to enable oasdeploy on a client machine, you must temporarily have
access to an existing Oracle Application Server installation and perform the follow-
ing steps.

1. Make a directory on the client machine to store the necessary files. Create an
environment variable called ORAWEB_HOME that is set to the directory path.

2. Copy the following files from the existing Oracle Application Server installa-
tion to the same path on the client machine. This installation will have it’s own
value of ORAWEB_HOME set.

■ $ORAWEB_HOME/bin/oasdeploy

■ $ORAWEB_HOME/classes/oasdeploy.jar

■ $ORAWEB_HOME/jdk/lib/classes.zip

Downloading Client JAR File
You can use oasdeploy to download the JAR file containing the client stubs
required by a Java client application to communicate with the server application.
Use the -c option to indicate the directory in which to download the JAR file to.
For example,

oasdeploy -a myStack -u admin/adminpasswd@node1:8888 -c /client/stubs

Security
A client uploading a deployable JAR file to an application server site has to be
authenticated by the node manager of the site’s primary node. If the application is
to be deployed to remote nodes, the client also needs to be authenticated by the
remote node’s manager to copy the application’s JAR files to the remote node.
8-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

9

Reference

This chapter contains reference pages for the classes.

■ Logger Class

■ setSeverity

■ getSeverity

■ OASApplicationDescriptor Class

■ OASApplicationDescriptor constructor

■ getOtherApplications

■ getTxDads

■ getTxEnabled

■ isTxEnabled

■ setOtherApplications

■ setTxDads

■ setTxEnabled

■ getAuthenticationString

■ getMaxInstances

■ getMinInstances

■ setAuthenticationString

■ setMaxInstances

■ setMinInstances
Reference 9-1

Logger Class
Logger Class

public abstract class Logger extends PrintWriter

The oracle.oas.ejb.Logger class enables you to write messages to the Oracle Applica-
tion Server logging facility. The methods in the class allow you to set the severity
level of the message. The methods that perform the actual writes are from the Print-
Writer class.

Figure 9–1 Inheritance for the Logger class

setSeverity

Class
oracle.oas.ejb.Logger

Syntax
public void setSeverity(int level)

Description
Set the logging severity level. If not set, the default is LOG_SEVERITY_DEBUG.

Parameters
level - The severity level (0 to 15). You may use the following constants to specify
the severity of the message. The lower the value, the more severe the message is.

java.lang.Object

java.io.Writer

java.io.PrintWriter

oracle.oas.ejb.Logger
9-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Logger Class
getSeverity

Class
oracle.oas.ejb.Logger

Syntax
public abstract int getSeverity()

Description
The current severity level for logging.

Return Value
The current severity level.

Table 9–1 Logger variables

Symbol Description Value

LOG_SEVERITY_FATAL Fatal error messages 0

LOG_SEVERITY_ERROR Non-fatal error messages 1

LOG_SEVERITY_WARNING Warning messages 4

LOG_SEVERITY_DEBUG Debug messages. This is the default
severity level.

11

LOG_SEVERITY_FULL_TRACE Trace messages 15
Reference 9-3

OASApplicationDescriptor Class
OASApplicationDescriptor Class

public abstract OASApplicationDescriptor extends SessionDescriptor

The oracle.oas.ejb.deployment.OASApplicationDescriptor class
enables you to define default values for Oracle Application Server-specific applica-
tion-level parameters for EJB applications. The class provides parameters in addi-
tion to those in the standard
javax.ejb.deployment.DeploymentDescriptor and javax.ejb.deploy-
ment.SessionDescriptor classes.

Figure 9–2 Inheritance for the OASApplicationDescriptor class

OASApplicationDescriptor constructor

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public OASApplicationDescriptor()

Description
Create a new OASApplicationDescriptor instance.

java.lang.Object

javax.ejb.deployment.DeploymentDescriptor

javax.ejb.deployment.SessionDescriptor

oracle.oas.ejb.deployment.OASApplicationDescriptor
9-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

OASApplicationDescriptor Class
getOtherApplications

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public Name[] getOtherApplications()

Description
Get a list of other applications that the current application uses.

Return Value
An array of application names.

getTxDads

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public String getTxDads()

Description
The transactional DADs (database access descriptors) that objects in the application
use when performing global transactions.

Return Value
Transactional DAD names. If the application uses more than one transactional
DAD, the DAD names are comma-separated.
Reference 9-5

getTxEnabled
getTxEnabled

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public void getTxEnabled()

Description
Get whether or not objects in the application use JTS.

Return Value
true if transactions are enabled for this application. false otherwise.

isTxEnabled

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public void isTxEnabled()

Description
Get whether or not objects in the application use JTS.

Return Value
true if transactions are enabled for this application. false otherwise.
9-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

OASApplicationDescriptor Class
setOtherApplications

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public void setOtherApplications(Name otherApps[])

Description
Define a list of other applications that the current application uses.

Parameters
otherApps - An array of application names that the current application uses.

Return Value
n/a

setTxDads

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public void setTxDads(String dads)

Description
Define the transactional DADs (database access descriptors) that objects in the
application use to perform global transactions.

Parameters
dads - Transactional DAD names. If the application uses more than one transac-
tional DAD, the DAD names are comma-separated.
Reference 9-7

setTxEnabled
Return Value
n/a

setTxEnabled

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public void setTxEnabled(boolean val)

Description
Specify whether or not objects in the application use JTS.

Parameters
val - true if objects in the application uses JTS, false otherwise. The default
value is false .

Return Value
n/a

getAuthenticationString

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public String getAuthenticationString()

Description
Get the authentication string for the EJB object.
9-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

OASApplicationDescriptor Class
Return Value
The authentication string for the EJB object. See setAuthenticationString() for a
description of the authentication string format.

getMaxInstances

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public int getMaxInstances()

Description
Get the maximum number of application instances per EJB server.

Return Value
An integer.

getMinInstances

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public int getMaxInstances()

Description
Get the minimum number of instances per EJB server for the EJB object.

Return Value
An integer.
Reference 9-9

setAuthenticationString
setAuthenticationString

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public void setAuthenticationString(String authStr)

Description
Protect the EJB object by associating it with an authentication string. To access the
EJB object, a client has to provide identification that passes the authentication string.

Parameters
authStr - The authentication string for the EJB object. The string has the following
format:

<scheme>(<realm>) [{"|" | "&"} & <scheme>(<realm>) ...]

scheme specifies an authentication server scheme. It is one of: Basic ,
Basic_Oracle , IP , Domain , or noaccess .

realm specifies a realm in the specified scheme. See the Security Guide for informa-
tion on how to define realms. If the scheme is noaccess , the realm is empty, and
the authentication string looks like:

noaccess()

An authentication string can consist of more than one “scheme(realm)” specifica-
tions. For example, you can have an authentication string that looks like:

Basic(myProject) & IP(buildingOne)

This authentication string consists of two parts, and a client must fulfill both parts
to access the protected object. The client must provide a username/password for
the “myProject” realm and its IP address must be in the “buildingOne” realm.

You can also connect the parts with the | character. This “or” operator indicates
that a client needs to fulfill only one part of the authentication string. For example,
in the following authentication string:
9-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

OASApplicationDescriptor Class
Basic(myProject) | IP(buildingOne)

a client can access the object if it provides a username/password for the
“myProject” realm, or if its IP address is in the “buildingOne” realm.

Return Value
n/a

setMaxInstances

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor

Syntax
public void setMaxInstances(int val)

Description
Set the maximum number of application instances per EJB server.

Parameters
val - An integer.

Return Value
n/a

setMinInstances

Class
oracle.oas.ejb.deployment.OASApplicationDescriptor
Reference 9-11

setMinInstances
Syntax
public void setMaxInstances(int val)

Description
Set the number of application instances per EJB server which will be prestarted.

Parameters
val - An integer.

Return Value
n/a
9-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Part II

Enterprise CORBA for Java

Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Enterprise CORBA Objec
10

Enterprise CORBA Objects for Java

Contents
■ The Enterprise CORBA Objects for Java Component Model

■ ECO/Java Features in Oracle Application Server

■ Client View of ECO/Java Objects

■ Differences Between ECO/Java Applications and Web Applications

■ Tools and Development Process

■ Invoking PL/SQL Procedures

■ Development Flowchart

The Enterprise CORBA Objects for Java Component Model
Enterprise CORBA Objects for Java (ECO/Java) is a component model in Oracle
Application Server. ECO/Java was created to support clients that do not support
passing objects by value. This includes non-Java clients, browser clients, and any
Java client that is not RMI-based.

The ECO/Java server exists on a CORBA environment base. Thus, ECO/Java
objects, containers, and servers are CORBA objects and can be accessed from any
CORBA client. All ECO/Java interfaces extend org.omg.CORBA.object .

ECO/Java mimics the EJB specification. This is provided for future conversion
between the two models. Thus, ECO/Java has the following EJB component
requirements:

■ The home and remote interfaces for creating the object, invoking methods, and
releasing the object
ts for Java 10-1

ECO/Java Features in Oracle Application Server
■ ECO/Java objects exist in containers and servers, which have equivalent func-
tions to EJB containers and EJB servers

Oracle Application Server provides the configuration and management software,
ECO/Java containers, and servers. You provide the ECO/Java objects, which con-
tain the business application logic.

Your ECO/Java objects exists within an ECO/Java application. You configure the
objects and the application within a deployment information file and deploy the
file within Oracle Application Server. After deployment, you can change certain
application-level parameters. However, the object configuration cannot be changed
through the Oracle Application Server Manager. Refer to Chapter 12, “Creating the
Deployment Information File” for information on deployment files and to the
Administrator’s Guide for information on configuration and deployment. Once
deployed, the application server manages the ECO/Java application and all objects
contained within the application.

ECO/Java Features in Oracle Application Server
Similar to EJB components, the ECO/Java application requires six roles:

When you use the application server as the platform for deploying ECO/Java appli-
cations, the application server performs the roles of server and container provider.
It also provides an environment to facilitate application assembly, deployment, and

ECO/Java object provider Provided by the user. Business logic to run under
Oracle Application Server ECO/Java framework.

Application assembler Oracle Application Server groups ECO/Java objects
into applications with their own separate JNDI name
spaces. This facilitates managing of large sites.

Deployer The application server is the platform on which ECO/
Java applications run. The application server reads
and implements the deployment information file for
each application.

Container and server
provider

The application server provides a server process,
which runs the ECO/Java containers and implements
their services.

System administrator The application server provides Oracle Application
Server Manager, which is a set of HTML forms that
enables you to monitor and manage your
applications.
10-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ECO/Java Features in Oracle Application Server
system administration. When you install an ECO/Java application, you provide a
deployment file for the application.

Figure 10–1 shows how ECO/Java component applications are deployed in the Ora-
cle Application Server.

Figure 10–1 Components in the ECO/Java infrastructure of Oracle Application Server

In a ECO/Java application, ECO/Java objects exist in application instances. The
application instances themselves exist in a ECO/Java container, which provides runt-
ime services such as lifecycle control, transactions, security, and concurrency. The
application server provides these containers when you deploy and run ECO/Java
applications.

ECO/Java servers contain ECO/Java containers. In the application server, a ECO/
Java server corresponds to a process and is managed like a cartridge process. A
ECO/Java server provides a JVM and Java packages needed by the ECO/Java run-
time and services such as process and thread management, load balancing, and log-
ging. It provides the framework within which ECO/Java applications run.

The RM Proxy in the application server provides a CosNaming service and authen-
tication for clients connecting to an application instance. Once a client is associated

Oracle Application Server

ORB

ECO/Java Server Process (JVM)

RM

Application Instances

Proxy

ECO/Java Container

Clients

Object

Object

Object
Enterprise CORBA Objects for Java 10-3

Client View of ECO/Java Objects
with an application instance, communication between the client and application
instance occur through the ECO/Java server.

Limitations in the Current Release
For this release of Oracle Application Server 4.0, the ECO/Java component has the
following limitations:

■ Entity objects are not supported—Two types of objects exists: entity objects and
session objects. Entity objects are not supported by the current version of Ora-
cle Application Server. The application server supports session objects only.

■ Method overloading of remote methods is not available.

■ IIOP mapping does not comply with the standardized mapping of Java RMI/
IIOP as defined by JavaSoft.

Client View of ECO/Java Objects
ECO/Java provides two interfaces for the client: a home interface and a remote
interface. The remote interface should not be confused with the RMI Remote inter-
face. All further references to the remote interface is to the ECO/Java remote inter-
face, which extends the RMI Remote interface.

■ Home interface: The client utilizes the home interface to locate and create an
instance of the object.

The client locates the home interface through the Java Naming and Directory
Interface (JNDI). An application’s JNDI name space is represented in the Java
Virtual Machine (JVM). When a client traverses the JNDI name space of an
application, an application instance is automatically associated with the client.
This application instance contains the entire name space for the application and
is used for locating all home interfaces of objects in the application.

The client creates an instance of the object using a create() method in the
home interface.

■ Remote interface: The client accesses the methods in the bean through the
bean’s remote interface. This interface is implemented by an object, which is cre-
ated when the bean is deployed in the container.
10-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Differences Between ECO/Java Applications and Web Applications
Figure 10–2 ECO/Java Architecture

Differences Between ECO/Java Applications and Web Applications
There are significant differences between ECO/Java applications and other applica-
tions in the application server environment.

Transport Protocol
IIOP (Internet Inter-ORB Protocol) 2.0 is the transport protocol used between:

■ clients and ECO/Java applications

■ beans running on different Java Virtual Machines

Traditional web applications use HTTP for their transport protocol. IIOP (Internet
Inter-ORB Protocol) is a CORBA transport protocol specified by the OMG (Object
Management Group, http://www.omg.org).

When you create your clients and applications, the application server generates for
you infrastructure code, such as stubs and skeletons, to support the CORBA/IIOP
architecture. CORBA/IIOP is used to allow clients direct connection to the ECO/
Java objects. After the initialization process, client requests and application
responses do not go through the application server.

ECO Home

ECO Remote

ECO/Java Server

Client

ECO Container

Object

Object

Object

ECO Home

ECO Remote

ECO Home

ECO Remote
Enterprise CORBA Objects for Java 10-5

Tools and Development Process
Clients
Clients of ECO/Java applications can be traditional stand-alone CORBA-based
Java or non-Java clients, or ECO/Java objects in the same or different application.
They cannot be HTTP-based browsers or EJB clients.

For browsers, you cannot enter a URL in a browser to access an ECO/Java applica-
tion. Rather, applets running within browsers can be the clients of ECO/Java appli-
cations. When you invoke web-based applications from the browser, the
application executes and returns a HTML page to the browser using HTTP. The
browser then interprets and renders the HTML.

Tools and Development Process
To develop ECO/Java objects, you can use any Java development environment that
supports Java 1.1.6 or later. For example, you can use Oracle JDeveloper, or the JDK
from Sun Microsystems. One advantage of using Oracle JDeveloper is that it pro-
vides local debugging capabilities for ECO/Java objects.

You also need the JAR utility to package the application. JAR comes with JDK from
Sun. Unlike EJB, you do not need to generate serialized deployment descriptors for
your ECO/Java application. You only need to create a deployment information file,
which is a text file.

Invoking PL/SQL Procedures
To enable Java applications to invoke PL/SQL procedures and functions, you can
use pl2java, a utility that generates Java wrapper classes for PL/SQL procedures.

Before using pl2java, you must add the following to your application’s environ-
ment variables:

See Developer’s Guide: JServlet Applications for more information on the pl2java util-
ity.

See the Administration Guide for information on updating an application’s environ-
ment variables.

Table 10–1 Environment variables required to invoke pl2java

Name Value

LD_LIBRARY_PATH (Unix only) $ORACLE_HOME/cartx/jweb/lib

PATH (Windows NT only) $ORACLE_HOME/cartx/jweb/lib
10-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Development Flowchart
Development Flowchart
The flowchart below depicts the overall steps you need to perform to create an
ECO/Java application and its client.

Figure 10–3 Development process flowchart

Create ECO/Java

Create Support

Create Remote

Compile

Create Deployment

and Home
Interfaces

Classes

Classes

Information File

Create Application
JAR File

Deploy ECO/Java
Application

Create Client
Application

Create Client
JAR File

Run Client

Object
Enterprise CORBA Objects for Java 10-7

Development Flowchart
Create ECO/Java Component—See Chapter 11
To create the ECO/Java component, you must do the following steps.

1. Create the ECO/Java implementation

2. Create ECO/Java remote and home interfaces

3. Create support classes, like exceptions, data structures, etc.

Compile and Deploy your ECO/Java Component—See Chapter 12
Once you have created the ECO/Java component, you must do the following steps:

4. Compile classes

5. Create the manifest file and deployment descriptors for each bean and the
application

6. Create the application JAR file

7. Deploy the ECO/Java application within the application server

Create Client—See Chapter 13
8. Create the client application

9. Create the client JAR file

10. Run client
10-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating ECO/Jav
11

Creating ECO/Java Objects

This chapter focuses on creating and using ECO/Java objects. The ECO/Java frame-
work is similar to the EJB framework. For this release, the ECO/Java objects extend
the SessionBean interface. The next release, your ECO/Java objects can extend the
EntityBean interface.

ECO/Java is different from EJB in that the objects are CORBA-centric and allow
access form any language with CORBA support. You can access any ECO/Java
object through either the JNDI interface or through CosNaming. In addition, you
can take an existing CORBA application and transform it into an ECO/Java applica-
tion. This enables your CORBA application to be installed and managed by the
application server.

Contents
■ Steps for Creating ECO/Java Objects

■ Client Interfaces

■ Creating the SessionBean Class

■ Invoking ECO/Java Objects Remotely

■ Stateful and Stateless ECO/Java Objects

■ Transforming Your CORBA IDL Application into ECO/Java

■ Guidelines for Easy Conversion to EJB
a Objects 11-1

Steps for Creating ECO/Java Objects
Steps for Creating ECO/Java Objects
To create a ECO/Java object, perform the following steps:

1. Create a remote interface for the object. The remote interface declares the meth-
ods that a client can invoke and must extend oracle.oas.eco.ECOObject .

2. Create a home interface for the object. The home interface must extend ora-
cle.oas.eco.ECOHome . In addition, it defines the create method for your
object.

3. Create a SessionBean class that implements your functionality. This includes
the following methods:

a. The implementation for the methods declared in your remote interface.

b. The methods defined in the oracle.oas.eco.SessionBean interface.

c. The ecoCreate method with parameters matching those of the create
method of the home interface.

4. Create the deployment information file for the application. This file, named
ECO.APP, contains the names of the implementation class, remote and home
interfaces. In addition, it contains general information required for deploying
your application. See Chapter 12, “Creating the Deployment Information File”.

5. Create a JAR file containing the object implementation class, the remote and
home interfaces, any supporting classes, and the deployment information file
ECO.APP. The JAR file must contain the definition for all objects within your
application.

Client Interfaces
An ECO/Java object has two client interfaces: a remote interface and a home inter-
face. The remote interface specifies the methods that the object’s clients can invoke
to perform the its business functions. The home interface defines how clients can
create the object, which returns a reference to a newly created object. Both inter-
faces have the same restrictions.

■ Requirements for Remote and Home Interface Implementation

Note: If the ECO/Java object you create accesses another object,
see the section “Getting the Object Reference for an Object” on
page 13-3 for information on looking up ECO/Java objects from
another ECO/Java object.
11-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Client Interfaces
■ Creating the Remote Interface

■ Creating the Home Interface

■ Creating the Exception Class

Requirements for Remote and Home Interface Implementation

Creating the Remote Interface
The remote interface of an object provides an interface for clients to access methods
in that object. The remote interface defines the methods that you implement for
remote access.

The remote interface extends the oracle.oas.eco.ECOObject interface, which
has the following definition:

public interface ECOObject extends org.omg.CORBA.Object {
ECOHOME getECOHome(); // returns reference to home interface
Handle getHandle(); // returns serializeable handle to object
org.omg.CORBA.Any getPrimaryKey(); // not supported
boolean isIdentical(ECOObject obj);
void remove() throws RemoveException;

}

Requirement Description

CORBA conformance The javax.eco.ECOObject and
oracle.oas.eco.ECOHome interfaces extend
org.omg.CORBA.Object . All interfaces that you define
also extend org.omg.CORBA.Object .

Primary key Primary keys are used for ECO/Java EntityBeans. Since
Oracle Application Server does not currently support
entity objects within ECO/Java, any method that requires
a primary key, such as the remove(Object) method
within the home interface, is not supported.

Naming convention All interfaces that extend org.omg.CORBA.Object must
conform to IDL mapping naming rules. This includes the
rule that identifiers cannot start with underbar sign (_) or
contain the dollar sign ($). Your application and object
names can include the slash sign (/).
Creating ECO/Java Objects 11-3

Client Interfaces
You do not need to implement the methods in the ECOObject interface; these
methods are implemented for you by the ECO/Java container.

Example
The following code sample shows a remote interface called ServerStackRemote ,
which declares four methods (implemented in the object): getStackSize, setStack-
Size, push, and pop.

package myStack;

public interface ServerStackRemote extends oracle.oas.eco.ECOObject
{

public int getStackSize ();
public void setStackSize (int size) throws StackException;
public void push (String value) throws StackException;
public String pop () throws StackException;

}

Function Description

getECOHome() Retrieves the object reference for the home interface for this
particular object.

getHandle() A serializable Java representation of the ECO/Java object
reference can be obtained using the getHandle method of
the remote interface. The handle can be serialized and used
to re-establish a connection to the same object—as long as
the object instance is still active. You use the getECOOb-
ject method within the Handle class to retrieve the object
instance.

getPrimaryKey() The getPrimaryKey method is defined for the future sup-
port on ECO/Java EntityBeans. Not supported in this
release.

isIdentical() Tests that the object calling this method and the object in the
argument are identical (as far as the container is concerned).
This identifies that both objects are the same for all pur-
poses.

remove() Deactivates the ECO/Java object. This, in turn, destroys the
object instance (if stateful).
11-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Client Interfaces
Creating the Home Interface
Clients use an object’s home interface primarily to create instances of the object. An
object’s home interface can also be used to retrieve metadata information about the
object through the org.omg.CORBA.Object interface or remove the object, given
a handle.

The home interface must extend the oracle.oas.eco.ECOHome interface, which
has the following definition:

public interface ECOHome extends org.omg.CORBA.object {
ECOMetaData getECOMetaData();
void remove(Handle handle) throws RemoveException;

}

The methods in the ECOHome interface are implemented by the container. A client
can remove an ECO object using either of the remove methods defined in its home
or remote interfaces.

Creating a ECO/Java Object
The home interface should define the appropriate create method for your object.
The client invokes the create method declared within the home interface. The con-
tainer turns around and calls the ecoCreate method, with the appropriate param-
eter signature, within your object’s implementation. The parameter arguments can
be used to initialize the state of a new object.

Example
The following code sample shows a home interface called ServerStackHome . The
create method contains no arguments as it is a stateless object.

package myStack;

public interface ServerStackHome extends oracle.oas.eco.ECOHome {
public ServerStackRemote create ()

throws oracle.oas.eco.CreateException;
}

Note: The allowed signature on your create method depends
on whether your bean is stateless or stateful. A stateless bean can-
not provide any parameters upon initialization. See “Stateful and
Stateless ECO/Java Objects” on page 11-14 for more information.
Creating ECO/Java Objects 11-5

Creating the SessionBean Class
Creating the Exception Class
Methods in the remote interface can throw exceptions. If a method throws an excep-
tion, the implementation of the method in the ECO/Java object must also throw the
same exception or a subclass of the exception. In other words, the exception listed
in the remote interface can be a superclass of the exception thrown by the imple-
mented method.

You cannot throw plain Java Throwable or Error subclasses, they must be a sub-
class of java.lang.Exception . Java exceptions are mapped to IDL exceptions in
the raises clause of the IDL method definitions. Subclasses of
org.omg.CORBA.UserException are of particular interest, since they can be
defined as standard CORBA IDL.

Note that exceptions that are a subclass of java.lang.Exception can be inter-
preted by Java clients only, unless they are a subclass of UserException .

Some methods in the ServerStack class can throw the StackException exception. For
an exception to be transported from the object to the client, you need to define a
class for the exception.

The following code defines an exception class and is found in StackException.java.

package myStack;

public final class StackException extends Exception
{
 public StackException()
 {
 }
}

Creating the SessionBean Class
The SessionBean object contains the business logic for your object. It implements
the following methods:

■ The object methods declared in the remote interface.

The object in the application consists of one class, ServerStack, that implements
a simple last-in-first-out stack where you can place and retrieve values. The
class has four public methods:

* setStackSize() sets the number of values the stack can hold.

* getStackSize() returns the number of values the stack can hold.
11-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating the SessionBean Class
* push() places a value on the stack.

* pop() returns a value from the stack.

■ The methods declared in the SessionBean interface.

■ The ecoCreate method that corresponds to the create method declared in the
home interface. The container invokes the ecoCreate method when the client
invokes the corresponding create method.

Interface Implemented
The object implements the oracle.oas.eco.SessionBean interface, which has
the following definition:

public interface SessionBean extends oracle.oas.eco.ECOBean {
void ecoActivate();
void ecoPassivate();
void ecoRemove();
void setSessionContext(SessionContext ctx);

}

Using ecoPassivate
An object can be set by the container to a passive state when it enters a period of
inactivity. Setting it to a passive state involves the temporary transfer of the object’s
state to secondary storage. This process is known as passivation.

Before the container can passivate an object, you must do two things within eco-
Passivate :

■ ensure that the object is serializable—you need to ensure that the state of an
object instance is serializable. The instance may be destroyed by the container if
the instance’s state is not serializable. This requires that any known non-serial-
izable attribute of the object must be declared transient or set to null.

Note: The ecoActivate and ecoPassivate methods are cur-
rently not invoked by the container. However, you are still
required to at least implement an empty method for both of them.
In addition, you may consider implementing these methods as if
they were called, so that when these methods are supported in a
future release, you do not have to go back and touch your ECO/
Java applications.
Creating ECO/Java Objects 11-7

Creating the SessionBean Class
■ close all open resources—you can close any open resources before passivation.
For example, all database connections or open file handles must be closed
before the object is passivated, because they cannot be serialized. In addition,
you may release large data structures within ecoPassivate that you can eas-
ily reconstruct within ecoActivate . The container takes care of actually passi-
vating the object.

Using ecoActivate
The process of reconstructing a passivated object to an active state is called activa-
tion. The ecoActivate method allows you to perform tasks necessary to recon-
struct an object instance’s state. This may include opening database connections,
opening appropriate file handles, and reconstructing any data structures discarded
during ecoPassivate . The container will load the serialized instance state before
ecoActivate is invoked.

Using ecoRemove
A container calls the ecoRemove method before it removes an object from the con-
tainer. This method is typically used for performing any clean-up you would like
performed before the object is destroyed. This may include things like closing data-
base connections or other resources.

Using setSessionContext
This method is used by an object instance to retain a reference to it’s context.
Objects have session contexts that the container maintains and makes available to
the objects. The object may use the methods in the session context to make callback
requests to the container.

The container invokes setSessionContext method, after it first instantiates the
object, to enable the object to retrieve the session context. The container will never
call this method from within a transaction context. If the object does not save the
session context at this point, the object will never gain access to the session context.

When the container calls this method, it passes the reference of the SessionContext
object to the ECO/Java object. The ECO/Java object can then store the reference for
later use. The following example shows the object saving the session context in the
sessctx variable.

package myStack;

import oracle.oas.eco.*;
import java.util.Properties;
import javax.naming.InitialContext;
11-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating the SessionBean Class
public class myObject implements SessionBean
{
 private SessionContext sessctx = null;

void setSessionContext(SessionContext ctx) {
sessctx = ctx; // reference is stored in

 // instance variable
}
// other methods in the object

}

The oracle.oas.eco.SessionContext interface has the following definition:

public interface SessionContext extends oracle.oas.eco.ECOContext {
ECOObject getECOObject();

}

And the oracle.oas.eco.ECOContext interface has the following definition:

public interface ECOContext {
Properties getEnvironment();
oracle.oas.eco.UserTransaction getUserTransaction();
boolean getRollbackOnly();
void setRollbackOnly();
boolean isCallerInRole(identity caller);

// not supported
Identity getCallerIdentity(); // not supported
ECOHOME getECOHome();

}

An ECO/Java object needs the session context when it wants to perform the opera-
tions listed in Table 11–1.

Table 11–1 SessionContext operations

Method Description

getEnvironment() Get the values of properties for the object.

getUserTransaction() Get a transaction context, which allows you to demarcate
transactions programmatically. This is only valid for objects
that have been designated transactional with
TX_BEAN_MANAGED.

setRollbackOnly() Set the current transaction so that it cannot be committed.
Creating ECO/Java Objects 11-9

Creating the SessionBean Class
ECO/Java Object Example
The following code implements methods of a ECO/Java object called ServerStack.

The example uses the application server’s Logger service, which is accessed
through JNDI with the "oas_service:logger" URL. The returned object is of
class oracle.oas.eco.Logger . It can be used to log messages using the applica-
tion server infrastructure.

package myStack;
import oracle.oas.eco.*;
import java.util.Properties;
import javax.naming.InitialContext;

public class ServerStack implements SessionBean
{
 private int stackSize = 0;
 private String stackElements[];
 private int top = -1;
 private SessionContext sc = null;
 private Logger logger = null;

 //implement the methods from SessionBean: ecoActivate, ecoPassivate,
 //ecoRemove, and setSessionContext.

 //store the session context for future use
 public void setSessionContext (SessionContext sc) {
 this.sc = sc;
 }

 //implement ecoCreate, which is called by the container when the
 //Home create is invoked by the client.
 public void ecoCreate ()
 throws CreateException
 {
 Properties env = sc.getEnvironment();

getRollbackOnly() Check whether the current transaction has been marked for
rollback only.

getECOHome() Get the object reference to the object’s corresponding ECO-
Home (home interface).

Table 11–1 SessionContext operations

Method Description
11-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating the SessionBean Class
 //retrieve OAS logging service and initialize.
 try {
 logger = (Logger)(new InitialContext()).lookup(“oas_service:logger”);
 logger.setSeverity(Logger.LOG_SEVERITY_DEBUG);
 }
 catch(javax.naming.NamingException ne) {
 System.err.println(“Could not get logger”);
 }

 //Set up the initial stack size.
 try {
 setStackSize(Integer.parseInt(env.getProperty(“initialStackSize”)));
 }
 catch (Exception e) {
 throw new CreateException(“Cannot parse initialStackSize”);
 }
 }

 //implement anything that needs to be done before the
 //object is destroyed. this would include closing any open
 //resources. For this example, nothing is necessary.
 public void ecoRemove() {
 }

 //implement anything that needs to be done before the
 //object is passivated. this would include closing any open
 //resources. however, for this example, no open resources need
 //to be closed. thus, the method is empty.
 public void ecoPassivate ()
 {
 }

 //implement the activation routine. anything that needs to be
 //done to the object upon activation should be included here.
 public void ecoActivate () {
 }

 //implement the methods for the object: getStackSize, setStackSize, push
 //and pop.
Creating ECO/Java Objects 11-11

Creating the SessionBean Class
 //getStackSize retrieves the size set for the stack that was set either
 //within ecoCreate or reset within setStackSize.
 public int getStackSize ()
 {
 logger.println(“ Getting stack size...”);
 return stackSize;
 }

 //resets the stack size to a new value.
 public void setStackSize (int size) throws StackException
 {
 if (size < 0)
 throw new StackException();
 logger.println(“ Setting stack size to “ + size + “...”);
 top = -1;
 stackSize = size;
 stackElements = new String[size];
 }

 //push a value on to the stack
 public void push (String value) throws StackException
 {
 if (top == stackSize - 1)
 throw new StackException();
 logger.println(“ Pushing \”” + value + “\” onto the stack...”);
 stackElements[++top] = value;
 }

 //pop a value off of the stack
 public String pop () throws StackException
 {
 if (top == -1)
 throw new StackException();
 logger.println(“ Popping the stack (returning element “ +
 stackElements[top] + “)...”);
 return stackElements[top--];
 }

}

11-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Invoking ECO/Java Objects Remotely
Invoking ECO/Java Objects Remotely
Remote method invocations to ECO/Java objects must be serialized. At any time,
only one invocation can be made through the remote interface of a particular
object. If a different client or thread makes an invocation while the first is execut-
ing, an exception is thrown on the second invocation. This applies to objects of all
kinds. In the ECO/Java framework, clients must be designed to invoke methods on
remote interfaces sequentially.

The events that occur when a client accesses an object are explained in the follow-
ing diagram and steps:

Figure 11–1 Sequence of events in a ECO/Java object’s lifecycle

The numbers in the figure correspond to the following numbered steps:

1. Client 1 looks up home interface of object X.

2. Reference to home interface X is returned to client 1.

3. Client 1 invokes create on home interface X.

4. Home interface X instantiates remote interface X. The container does one of the
following:

a. If the object is stateful, the object is instantiated for this client and is
destroyed when the client invokes the remove.

b. If the object is stateless, the container gives an object instance from an
object pool to service the client. The client has sole access to this object

Client 1

Container

Object X

ref to remote

home
interface X

remote
interface X

lookup (1)

ref to home
 interface X (2)

create() (3)

(4) (6)

methods (5)

remove (7)

interface X (4)
Creating ECO/Java Objects 11-13

Stateful and Stateless ECO/Java Objects
instance until it invokes the remove. When the remove is invoked, the
object is returned to the object pool for the next client request.

The object reference of remote interface X is returned to client 1.

5. Client 1 uses remote interface X to invoke methods on object instance X.

6. Remote interface X delegates call to an object.

7. Client 1 invokes remove on remote interface X when it is done with the object
instance. This destroys the remote interface, and possibly the object instance (if
stateful).

Stateful and Stateless ECO/Java Objects
Objects are either stateful or stateless.

■ A stateful object exists for a single client. It carries a "state" that is relevant only
for the particular client. An object is instantiated for every remote interface
instance held by a client.

■ A stateless object does not carry any state and thus, can service multiple clients.
The number of objects instantiated depends on the number of concurrent
method invocations occurring at a given time interval.

Stateful Object
A stateful object carries a state—or data—that is pertinent to the client that created
the instance. The stateful object exists only for the client that created it. That is, it
exists for the duration of the lifespan of the remote interface that is used by a client
to access the object.

When the remote interface is created through the create method in the home
interface, the stateful object is instantiated and initialized. When the remove
method in the remote or home interface is invoked, the instance is destroyed with
the remote interface. The ecoCreate and ecoRemove methods in the stateful
object are invoked with create and remove respectively.

Note: See “Stateful and Stateless ECO/Java Objects” on page
11-14 for more information on stateless and stateful object.
11-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Stateful and Stateless ECO/Java Objects
Figure 11–2 Stateful objects

Consider Figure 11–2:

■ Client 1 looks up a home interface instance for object X and obtains an object
reference to home interface X1. It uses this reference to invoke create in the
home interface and remote interface X1 is instantiated. Object instance X1 is
instantiated along with the remote interface.

■ Client 2 looks up a home interface instance for object X and gets an object refer-
ence to home interface X2. It invokes create in the home interface and remote
interface X2 is instantiated and so is object instance X2.

When Client 1 invokes methods on remote interface X1, the invocations are trans-
lated to object instance X1. When Client 2 invokes methods on remote interface X2,
the invocations are translated to object instance X2. The remote interfaces and their
corresponding object instances have a one-to-one relationship. When a client
invokes remove on its corresponding remote interface, both the remote interface
and associated object instance are destroyed.

Stateless Object
A stateless object has a lifespan independent of any remote interface. Stateless
objects do not carry any state—or data—for a specific client. Thus, a stateless object
can exist for more than one remote interface. When a method is invoked in a
remote interface, the container selects an instance existing in a pool to service the
request, or, if necessary, the container creates a new instance to handle the request.
Once an object instance is selected to process the method invocation, it belongs
exclusively to the remote interface that made the invocation for the duration of the
invocation.

Client 1

Container

Object X1
home

Client 2
create()

interface X1

remote
interface X1

Object X2
home
interface X2

remote
interface X2

Different instances

create()

tied to unique
remote interfaces.
Creating ECO/Java Objects 11-15

Stateful and Stateless ECO/Java Objects
Figure 11–3 Stateless objects

Consider Figure 11–3:

■ Client 1 looks up a home interface instance for object X and obtains an object
reference to home interface X1. It uses this reference to invoke create in the
home interface and remote interface X1 is instantiated. When Client 1 makes a
method invocation on remote interface X1, the container instantiates object
instance Xa and delegates the invocation to instance Xa. At this time, object
instance Xa can service only the request coming from remote interface X1.

■ Client 2 makes a method invocation on remote interface X2, object instance Xa
cannot service the request and a new object instance, Xb, is created to service
the request. If the invocation on remote interface X1 completes before Client 2
makes its invocation, object instance Xa would have been released into the
object pool and would be ready to answer the request from remote interface X2
(assuming the container, which manages the object pool, does not decide to
destroy object instance Xa in the meantime).

Setting the State
To specify an object as stateless or stateful, you specify a name-value pair in the
object’s section in the ECO.APP deployment information file. The name-value pair
has the syntax:

Stateless = FALSE | TRUE

Client 1

Container

Object Xa

home

Client 2
create()

interface X1

remote
interface X1

Object Xb

home
interface X2

remote
interface X2

Different instances

create()

not tied to a
particular remote
interface.

Object
Pool
11-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Transforming Your CORBA IDL Application into ECO/Java
If the value is FALSE, the object is stateful; if the value is TRUE, the object is state-
less. Refer to Chapter 12 for more information about the deployment information
file.

Transforming Your CORBA IDL Application into ECO/Java
If you have a CORBA application defined from IDL that you want to load within
the application server, you can redefine it as an ECO/Java application.

All of your IDL files must be compiled. You should use the application server’s
IDL-to-Java compiler, oasoidlc, to generate the CORBA stubs and skeletons. The
oasoidlc compiler is described fully in “Using the IDL-to-Java Compiler” on page
17-7. If your ECO/Java object does not refer to the generated interfaces, but your
clients do, you do not have to run the compiler because you can get the interfaces
from $ORAWEB_HOME/../apps/eco4j/<appName>/_client.jar. This JAR file is gen-
erated when you install the ECO/Java application on the application server.

Creating the Master IDL File
In addition to the IDL files for your object, you need to create one master IDL file
for the application. The master lists all of the IDL files for all objects in the applica-
tion. The master IDL file is used by the deployment tool to create the stubs and skel-
etons for all objects within the application. If you created the stubs and skeletons
yourself, the command syntax would be as follows:

oasoidlc -i -I $ORAWEB_HOME/public master.idl

For example, if your ECO/Java application consists of two objects, obj1 and obj2,
and you have separate IDL files for each object, the master IDL file for the applica-
tion looks like the following:

/* IDL file for the ECO/Java application */
#include "obj1.idl"
#include "obj2.idl"

The obj1.idl and obj2.idl files list the methods for the objects in the application.
Specify the IDL filenames in the deployment information file.

Note: The IDL-to-Java compiler in Oracle Application Server is
located in $ORACLE_HOME/orb/4.0/bin/oasoidlc (Unix) or
$ORACLE_HOME/orb/bin/oasoidlc (Windows NT).
Creating ECO/Java Objects 11-17

Transforming Your CORBA IDL Application into ECO/Java
See Part III, Accessing CORBA Objects from Java, for information on IDL files and
syntax.

If you decide to organize your IDL files within a directory structure (relative to the
root of where the JAR file is created), you must list the directory and file names
exactly. For example, in the figure below, the JAR file is unjarred within the classes
directory. The IDL files are located in the myIDL directory under classes.

Figure 11–4 Directory structure for files to be placed into the JAR file

Thus, the master IDL file would define its IDL files relative to the classes directory,
as follows:

/* IDL file for the ECO/Java application */
#include "myIDL/obj1.idl"
#include "myIDL/obj2.idl"

Migrating CORBA Objects to the Application Server
To migrate existing CORBA objects to the application server environment, you
have to make the following modifications to your existing CORBA objects:

Note: If you place your IDL files within a directory structure rela-
tive to the JAR root directory, this directory structure must be
included within any oasoidlc command and within the ECO.APP
idlInterfaces parameter.

/test/Stack

myStack

 ECO.APP

ServerStack.class

ServerStackRemote.class
StackException.class

 classes

ServerStackHome.class

META-INF myIDL

master.idl
obj1.idl
obj2.idl
11-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Transforming Your CORBA IDL Application into ECO/Java
■ Clients must use the create method of the home interface for creating their
object. To retrieve the home interface, the client uses JNDI. See “Getting the
Object Reference for an Object” on page 13-3.

■ The implementation of your CORBA object must not inherit from the skeleton.
For example, if your CORBA object class looks like this:

public class AccountImpl extends Bank._AccountImplBase {
...
}

you have to replace the extends clause with implement ora-
cle.oas.eco.SessionBean :

public class AccountImpl implement SessionBean{
...
}

The reason for this is that ECO/Java objects are not CORBA objects, but only
CORBA based.

■ The implementation of your CORBA object must implement the methods on
the interface, the SessionBean methods, and the ecoCreate .

Migrating IDL Definitions to the Application Server
Your IDL interface for your CORBA object must change in the following manner:

■ The interface must extend ::oracle::oas::eco::ECOObject . I

■ A new interface is added to declare the create method within the home inter-
face.

For example, if your IDL file is as follows:

module Bank {
 interface Account {
 void deposit (int long money);
 void withdraw (int long money) raises (NoMoney);
 }
}

You modify this file in the following manner:

#include ecoRemote.idl

module Bank {
Creating ECO/Java Objects 11-19

Guidelines for Easy Conversion to EJB
 interface Account: ::oracle::oas::eco::ECOObject {
 void deposit (int long money);
 void withdraw (int long money) raises (NoMoney);
 }

 interface AccountHome: ::oracle::oas::eco::ECOHome {
 Account create (in String number)
 }
}

Guidelines for Easy Conversion to EJB
One of the reasons for writing ECO/Java applications instead of EJB applications is
accessibility from other languages, besides Java. Since passing objects by value is a
feature only available to Java, EJBs can not be accessed at this time from non-Java
clients.

As the CORBA technology changes, you may decide to migrate your ECO/Java
application to EJB. This migration can be simple since the lifecycle of both APIs is
the same. The following sections explain how to write your ECO/Java application
in a way that the conversion to EJB can occur through conversion tools. See
“Migrating Enterprise CORBA Objects (ECO/Java)” on page 7-12 for information
on current migrating instructions.

1. Define all your parameters to be serializable.

ECO/Java allows the usage of classes that implement the Serializable interface
as long as none of the rules for ECO/Java parameters is violated.

2. Use wide imports for your ECO packages, and do not mention the package
names in the body of your code. For example:

import oracle.oas.eco.*

3. Limit the usage of org.omg.CORBA.SystemException . In particular, the
analysis of the minor codes and other attributes of this exception may make
porting your code difficult, and eliminate any possibility of mechanic transla-
tion.

4. Do not use identifiers containing the strings "ECO" or "eco" except for refer-
ences to ECO/Java APIs and import packages.

5. Place any method invocations within a try block.
11-20 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Guidelines for Easy Conversion to EJB
In ECO/Java applications, communication exceptions (org.omg.CORBA.Sys-
temException) need not be managed explicitly. For EJB applications, the con-
trary is true.
Creating ECO/Java Objects 11-21

Guidelines for Easy Conversion to EJB
11-22 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating the Deployment Inform
12

Creating the Deployment Information File

This chapter describes how to create the deployment information file for ECO/Java
applications. In addition, it discusses how to install your JAR file, improve perfor-
mance, and debug your application.

Contents
■ Overview

■ Structure of the Deployment Information File

■ Retrieving Values from the Deployment Information File

■ Creating the JAR File for Installation

■ Deploying your ECO/Java Application

■ Configuring the ECO/Java Application

■ Re-deploying and Reloading Applications

■ Improving Performance

■ Debugging ECO/Java Applications

Overview
The deployment information file provides information about an ECO/Java applica-
tion, such as the name of the application, the objects in it, and the number of
instances of the objects that can run in an ECO/Java server process. You include
this file in the JAR. The JAR contains all relevant files for your application for
deploying the application in the application server.

You can change some of these values after you have deployed the application in the
application server.
ation File 12-1

Structure of the Deployment Information File
The deployment information file is a text file called ECO.APP. You cannot change
this name. You need to install this file in the META-INF directory for the JAR file
creation. See the section “Creating the JAR File for Installation” on page 12-8 for
information on the directory structure.

Structure of the Deployment Information File
The ECO.APP deployment file is divided into two main sections:

■ The Application Section contains overall application configuration in the
[APPLICATION] and [APPLICATION.ENV] sections.

■ The Object Section contains configuration for each ECO/Java object in the
application. The sections are [<objectName>] and [<objectName>.ENV] .
The objectName is the local JNDI name. For example, with the mystack/
ServerStack demo, mystack is the application name and ServerStack is
the object name.

Each exists for the following function:

The following are the rules for creating the ECO.APP sections:

■ Each section contains property name-value pairs of the form:

<propname> = <value>

Table 12–1 Sections in the ECO.APP file

Section Description

[APPLICATION] Provides global application information that applies to all
objects within the application. This information can be the appli-
cation name, the default time-out duration, etc.

[APPLICATION.ENV] Provides user-specified name-value pairs available to all of the
objects in the application. This section is optional.

[<objectName>] Provides information such as the Java class name for the object,
the remote interface or IDL interface name for the object, and
optionally, the time-out duration. The <objectName> section
can be a multi-level name. See “Application Which Uses
Multi-Level Names” on page 12-7 for more information.

[<objectName>.ENV] Provides user-specified name-value pairs that are only available
for this object. This section is optional.
12-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Structure of the Deployment Information File
The propname parameter cannot contain spaces. The contents of the parameters
are case-sensitive.

■ Lines starting with a semicolon character (“; ”) are comments, and the whole
line is ignored.

■ Blank lines are ignored. Normally, you use them to separate sections.

The Application Section
The [APPLICATION] section contains the following properties:

Table 12–2 Application properties

Property Description Req/Opt

name The name of the application. The name cannot con-
tain white space characters. This name is used by cli-
ents to identify the application.

Required

usesApplications A comma-separated list of names of other applica-
tions, .jar, and .zip files used by this application. The
client .jar files for these applications and files are
added to the CLASSPATH for the application.

The .jar and .zip files must be given with their paths
relative to $ORAWEB_HOME. Use a forward slash (/
) as the path seperator.

Optional

idleTimeOut How long in seconds an application instance can be
idle before it is destroyed. An application instance is
idle when it is not servicing any client requests. A
value of 0 indicates no timeout.

Optional
The default is
3600 (1 hour).

minInstances This value specifies the number of application
instances that the application server prestarts in an
ECO/Java server process (JVM) for each application
process.

Optional
The default is 0.

maxInstances This value specifies the maximum number of applica-
tion instances that the application server can instanti-
ate to service client requests for each application. As
more clients access the application process, more
application instances are created to service the
requests until the value specified is attained. At this
point, no more instances are created and requests
have to wait until an instance is free. However, you
can always start up a new application process.

Optional
The default is
10.
Creating the Deployment Information File 12-3

Structure of the Deployment Information File
There are no pre-defined system properties for the [APPLICATION.ENV] section.
This section contains application-specific name-value pairs. For example, if you are
creating a mortgage application, you could have a property that specifies the inter-
est rate:

[APPLICATION.ENV]
InterestRate = 8.0

The Object Section
The name of an ECO/Java object is specified between the square brackets. This
name is the JNDI name for the object.

Table 12–3 lists the properties in the [<objectName>] section.

idlInterfaces The master IDL file that lists the IDL files for all
objects in the ECO/Java application. These files are
also listed in idlFiles . See “Creating the Master
IDL File” on page 11-17 for more information.

This property is
required only if
you are provid-
ing IDL files for
the objects in
the application.

idlFiles A comma-separated list of IDL files for the objects in
the application. These IDL files are included in the
JAR file that contains the files for the application.
Note that this list does not include the master IDL
file that you specify in the idlInterfaces property.

This property is
required only if
you are provid-
ing IDL files for
the objects in
the application.

transactions Enabled or Disabled to enable or disable the applica-
tion from using global transactions. See “Transac-
tion Parameters in the Deployment Information
File” on page 14-2.

Optional
The default is
Disabled.

transactionalDads If the application uses global transactions, list the
DADs that can be involved in the transaction. This is
a comma separated list of transactional DADs. See
“Transaction Parameters in the Deployment
Information File” on page 14-2.

Optional

Table 12–2 Application properties

Property Description Req/Opt
12-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Structure of the Deployment Information File
Table 12–3 Object properties

Property Description Req/Opt

className The full name of the Java class for the
object.

Required

remoteInterface The full name of the remote interface
for the object. See “Creating the
Remote Interface” on page 11-3 for
details.

Required

homeInterface The full name of the home interface for
the object.

Required

idleTimeOut How long in seconds an object instance
can be idle before it is destroyed. An
object instance is idle when it is not ser-
vicing any client requests. If 0, there is
no timeout.

Optional
The default is 3600
(1 hour)

stateless TRUE or FALSE. Whether the object is
stateful or stateless. See “Stateful and
Stateless ECO/Java Objects” on
page 11-14.

Optional
The default is FALSE.

transactionMode Specifies in what type of declarative
transaction state the object is allowed to
be in when a new transaction starts and
the behavior that occurs when the trans-
action is started. This is for declarative
transactions only. See “Transaction
Parameters in the Deployment
Information File” on page 14-2.

Optional
The default is
TX_NOT_SUPPORTED

transactionMode_
<remoteMethodname>

Specifies in what type of declarative
transaction state the method is allowed
to be in when a new transaction starts
and the behavior that occurs when the
transaction is started. If set for a particu-
lar method, it overrides the setting in
"transactionMode". This is for declara-
tive transactions only. See “Transac-
tion Parameters in the Deployment
Information File” on page 14-2.

Optional
The default what is set
in transactionMode.
Creating the Deployment Information File 12-5

Structure of the Deployment Information File
There are no pre-defined system properties for the [<objectName>.ENV] section.
This section contains object-specific name-value pairs. The name-value pairs
defined in this section have precedence over the name-value pairs of the same
name specified in the [APPLICATION.ENV] section.

Example Deployment Information Files
This section describes three different scenarios:

■ Example 12–1, “Application Which Uses Remote and Home Interfaces”

■ Example 12–2, “Application Which Uses IDL”

■ Example 12–3, “Application Which Uses Multi-Level Names”

Example 12–1 Application Which Uses Remote and Home Interfaces

This is a sample deployment information file for the ServerStack application. The
ServerStack example uses the remote and home interfaces to specify the methods a
client can invoke.

[APPLICATION]
name = ServerStackApp
idleTimeOut = 2000

[ServerStack]
className = myStack.ServerStack
remoteInterface = myStack.ServerStackRemote
homeInterface = myStack.ServerStackHome

authenticationString Specifies what type of security your
object requires from incoming clients.
See "Security for IIOP-based Applica-
tions" in the Oracle Application Server
Security Guide.

Optional

Note: Both home and remote interface parameters are required
even when you are using IDL to describe your objects. In fact, you
should have an IDL definition for the home interface. See “Trans-
forming Your CORBA IDL Application into ECO/Java” on page
11-17 for more information.

Table 12–3 Object properties

Property Description Req/Opt
12-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Structure of the Deployment Information File
[ServerStack.ENV]
; property used by the ServerStack object
stackSize = 10

Example 12–2 Application Which Uses IDL

This is a sample deployment information file for the ServerStack application. The
application uses an IDL file to specify the methods a client can invoke.

[APPLICATION]
name = ServerStackApp
idleTimeOut = 2000
idlInterfaces = stackMaster.idl
idlFiles = ServerStack.idl

[ServerStack]
className = myStack.ServerStack
remoteInterface = myStack.ServerStackRemote
homeInterface = myStack.ServerStackHome

[Stack.ENV]
stackSize = 10
ServerStack.idl is the IDL file that you created your server application from.
The stackMaster.idl file contains a list of all of the IDL files necessary for all
objects within this application. For this example, it would only include Server-
Stack.idl , as shown below:

/* IDL file for the ECO/Java application */
#include "ServerStack.idl"

Example 12–3 Application Which Uses Multi-Level Names

Multi-level names can be specified for application and object names in the
ECO.APP file. The levels are demarcated with “/”. Any JNDI lookup would have
to state the name fully with all levels. For example, the ECO.APP file specifying
remote and home interfaces from the example above looks as follows with multi-
level names:

[APPLICATION]
name = cmp1/cmp2/ServerStackApp
idleTimeOut = 2000

[objDir1/objDir2/ServerStack]
className = myStack.ServerStack
remoteInterface = myStack.ServerStackRemote
Creating the Deployment Information File 12-7

Retrieving Values from the Deployment Information File
[objDir1/objDir2/ServerStack.ENV]
; property used by the ServerStack object
stackSize = 10

The JNDI lookup for ServerStackApp would be "cmp1/cmp2/ServerStack-
App" . In addition, when unjarred, the levels translate to a filesystem directory hier-
archy that will contain the application’s generated support files.

Hence, cmp1/cmp2/ServerStackApp would be appended to an existing direc-
tory within your corresponding platform, as follows:

■ UNIX—$ORAWEB_HOME/../apps/eco4j/ cmp1/cmp2/ServerStackApp

■ NT—%ORAWEB_HOME%\..\apps\eco4j\ cmp1\cmp2\ServerStackApp

The support files for each object are placed into one of these directories.

Retrieving Values from the Deployment Information File
ECO/Java objects can retrieve values that are set within either the ECO.APP’s
<APPLICATION.ENV> or <OBJECT.ENV> sections using the getEnvironment ()
method from the oracle.oas.eco.SessionContext interface.

import javax.naming.InitialContext;
import oracle.oas.eco.*;

public class ServerStack implements SessionBean {
SessionContext sessctx;

 int stackSize;

void setSessionContext(SessionContext ctx) {
sessctx = ctx; // reference is stored in

// instance variable
 //retrieve the stack size value set in ECO.APP

stackSize = Integer.parseInt(
 ctx.getEnvironment().getProperty("stackSize"));

}

Creating the JAR File for Installation
You need to create a JAR file containing your application and its support files. This
JAR file is used by the Oracle Application Server Manager to install and register the
ECO/Java application in the application server environment.

Before you create the JAR file, you need to do the following:
12-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating the JAR File for Installation
1. Make sure that your classpath includes the correct Oracle Application Server
JAR files. To be able to compile and deploy your ECO/Java object, you need to
add one or more of the following JAR files to the CLASSPATH of your develop-
ment environment.

■ $ORAWEB_HOME/classes/ecoapi.jar — The JAR file for ECO/Java

■ (Unix only) $ORACLE_HOME/orb/4.0/classes/yoj.jar — The JAR file for
the ORB

■ (Windows NT only) $ORACLE_HOME/orb/classes/yoj.jar

2. Create any supporting necessary IDL files. If you plan on using IDL for your
object definitions, you need to create the IDL files for each object and the mas-
ter IDL file listing these files. The application server can create any supporting
IDL files from your ECO/Java application code; so this is not necessary.

3. Compile the .java files of your ECO/Java application into .class files.

4. Create the ECO.APP deployment information file.

The files you need to include in your JAR file:

■ The .class files generated from the .java files. This includes class files for your
implementation, the home interface, the remote interface, and any support
classes, such as the exception classes. The javac compiler provides a -d option
that lets you specify the destination directory for your class files. For example,
to place your class files in the /test/Stack/classes directory, type:

prompt> javac -d /test/Stack/classes *.java

■ The ECO.APP file containing your application’s deployment information. This
file should be located in the META_INF directory. Create the META-INF direc-
tory so that it is located at the top-level of the JAR file. For example:

prompt> mkdir /test/Stack/classes/META-INF
prompt> cp ECO.APP /test/Stack/classes/META-INF

Note: Currently, the NT environment has a 512 byte limitation on
the expanded length of some environment variables (CLASSPATH,
JAVA_HOME, etc.). Since some cartridges and ECO/Java objects
try to expand environment variables, make sure that your environ-
ment variables are not longer than 250-300 characters.
Creating the Deployment Information File 12-9

Deploying your ECO/Java Application
■ IDL files—If you are using ECO/Java objects described by IDL, you also need
to include these IDL files in the JAR. The location of the IDL files in the JAR file
is specified by the idlFiles and the idlInterfaces parameters in the
ECO.APP file.

You do not need to include the stubs and skeletons generated from the IDL
files; when you install the JAR file, the application server runs the oasoidlc
compiler on the included IDL files to get the stubs and skeletons. For more
information on the compiler, see Chapter 17, “Accessing CORBA Objects from
Java”.

Once created, all files should be placed in the package directory in preparation to
be placed into a JAR file as shown in the following figure.

Figure 12–1 Directory structure for files to be placed into the JAR file

Once all of the files are ready, you can generate the JAR file, as listed below:

prompt> cd /test/Stack/classes
prompt> jar cf /test/Stack/Stack.jar *

The jar utility is provided by JDK. It can be found in the bin directory of your Java
installation.

Deploying your ECO/Java Application
To deploy an ECO/Java application in the application server, you can use the Ora-
cle Application Server Manager. The only information you need to provide is the

/test/Stack

myStack

 ECO.APP

ServerStack.class

ServerStackRemote.class
StackException.class

 classes

ServerStackHome.class

META-INF myIDL

master.idl
stack.idl

*if IDL files were
required, they
would be either
in a user-defined
directory or under
"classes".
12-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Deploying your ECO/Java Application
location and name of a JAR file that contains the application’s files. You will also
need to decide if you want the installation to occur only on the primary node or on
all nodes. See Chapter 7, "Application Administration" in the Administration Guide
for more information on how to deploy your ECO/Java application.

When you install the JAR file, the Oracle Application Server Manager does the fol-
lowing with the JAR file:

■ reads the ECO.APP file from the JAR for a list of objects and their remote and
home interfaces

■ generates IDL files, stubs, and skeletons based on the remote and home inter-
faces

■ compiles the generated code

■ generates the .app registration files, which are used to register the application
in the application server’s configuration file.

■ generates $ORAWEB_HOME/../apps/eco4j/<appName>/_server.jar. This file is
added to the CLASSPATH environment variable for the application.

■ generates $ORAWEB_HOME/../apps/eco4j/<appName>/_client.jar

You should see your application under Applications in the navigational tree.

If you modify the code of your ECO/Java objects, you need to re-deploy the appli-
cation so that the generated files are updated. The Oracle Application Server Man-

Note: If <appName> is a composite JNDI name, then a hierarchy
of sub-directories will be created. For example, files for an applica-
tion named "corp/bank/branch" will be placed in a directory
named $ORACLE_HOME/ows/apps/eco4j/corp/bank/branch.

Note: Two of these generated files are used by any Java client.

■ The $ORAWEB_HOME/../apps/eco4j/<appName>/
_client.jar file should be placed in the client’s classpath.

■ The $ORAWEB_HOME/../apps/eco4j/<appName>/
OASClientInterfaces.idl file should be used in compiling any
CORBA-based client for access to the server.
Creating the Deployment Information File 12-11

Configuring the ECO/Java Application
ager overwrites the existing files. See “Re-deploying and Reloading Applications”
on page 12-17 on how to re-deploy your ECO/Java application.

Configuring the ECO/Java Application
After you have installed the application, you can modify the values of its configura-
tion parameters, if necessary. See Table 12–4, Table 12–5, and Table 12–6 for the
parameters that can be changed through the GUI after deployment. If you change
any parameters, you must reload the application for the changes to take effect. See
“Re-deploying and Reloading Applications” on page 12-17 on how to re-deploy
your ECO/Java application.

You configure ECO/Java applications using the Oracle Application Server Man-
ager. Configuration parameters for ECO/Java applications are divided into three
levels:

■ Server-Level Parameters

■ Application Instance Parameters

■ Object-Level Parameters

A full description of these parameters is listed in “Parameters in Detail” on page
12-14.

Server-Level Parameters
The following table describes the server level parameters:

Note: You can also deploy or re-deploy your applications using
oasdeploy, a utility that deploys EJB and ECO/Java applications
on primary or remote nodes. It can also deploy applications on all
nodes in a site. See Chapter 8, “Deploying Applications Using oas-
deploy”.

Table 12–4 Server-level parameters

Parameter Description Form location Default value

Initial startup instances The minimum number of instances
to start up for the application

Hosts 0

Environment Variables Environment variables for the Java
Virtual Machine

Environment
Variables

Set by Oracle Application
Server
12-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Configuring the ECO/Java Application
Application Instance Parameters
The following table describes the parameters for application instances:

Logging parameters Directory, size of files, etc. Logging On

User-specified Name-value pairs for the
application

Java Environment From [APPLICA-
TION.ENV] section

Transactions Enable transaction service for the
application

Tx Property From transactions parame-
ter in the deployment file

Transactional DADs Databases used by a transactional
application

Tx Property From transactionalDads
parameter in the deploy-
ment file

Table 12–5 Application instance parameters

Parameter Description Form location Default

Timeout The timeout period for application
instances

Instance Parame-
ters

From idleTimeOut param-
eter in the deployment file

Priority The priority level for the applica-
tion instances in the application
process.

Tuning Priority is not able to be
set within the deployment
file

Authentication String Authentication string for the appli-
cation

Security From authenticationString
parameter in the deploy-
ment file

Table 12–4 Server-level parameters

Parameter Description Form location Default value
Creating the Deployment Information File 12-13

Configuring the ECO/Java Application
Object-Level Parameters
The following table describes parameters applicable to all objects in an application:

Parameters in Detail

Priority (server level)
This parameter sets the priority of an application with respect to the application
server site the application is deployed in. It is a performance tuning parameter. The
number of processes, threads, and instances for an application is automatically
determined based on the request load and priority level of the application and com-
ponents. (Refer to the Performance and Tuning Guide for more information.)

Performance can also be tuned according to minimum and maximum values speci-
fied for application instances called min/max-based tuning (see “Minimum and
Maximum Number of Instances (application level)” on page 12-16).

If you are deploying your application using a ECO.APP file, only minimum and
maximum application instances can be specified. The default value is medium.

Environment Variables (server level)
This form defines the values of environment variables used by Java Virtual
Machine processes. You should not remove any of the values from the pre-defined
environment variables, but you can define your own environment variables or
append values to the pre-defined variables.

Table 12–6 Object-level parameters

Parameter Description Form location Default

User-specified Name-value pairs for the object Object Environ-
ment

From [<object>.ENV] sec-
tion in the deployment
file
12-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Configuring the ECO/Java Application
Logging Parameters (server level)
You can enable or disable logging. If enabled, you can specify the directory and file
to which the logged messages are written for this application. You can also specify
the severity levels (between 0 and 15), where low values indicate serious problems.
Specifying a high value will cause the logger to log more messages because it
writes all messages up to and including that severity level. For example, if you set
the severity level at 3, the logger logs messages of severity levels 0, 1, 2, and 3.

All the components in the application server use the values in the severity levels in
the same way. See the Administration Guide for severity level details.

The default configuration for logging uses the same values as for system logging.

Table 12–7 Environment variables

Variable Description

CLASSPATH A list of directories or JAR files that contain class files for your
objects. For example:
$ORAWEB_HOME/../apps/eco4j/brokerage/server/brokerage.jar.

When you install your application, CLASSPATH is set to access
all classes contained in the JAR file being deployed as well as
other supporting classes.

On Unix platforms, directories and JAR files in CLASSPATH are
colon-separated. For example,
$ORAWEB_HOME/../apps/eco4j/brokerage/brokerage.jar:
$ORAWEB_HOME/../apps/eco4j/brokerage/classes.

On Microsoft Windows NT, directories and JAR files in CLASS-
PATH are semicolon-separated. For example,
%ORACLE_HOME%\..\apps\eco\brokerage\brokerage.jar;
%ORACLE_HOME%\..\apps\eco\brokerage\classes.

PATH A list of directories (colon-separated on Unix, semicolon-sepa-
rated on NT) that contain executables. This should be set to con-
tain %ORAWEB_HOME%\jdk\bin.

LD_LIBRARY_PATH (UNIX only) A colon-separated list of directories that contain
binary libraries.

JAVA_HOME The top-level directory where Java is installed. This should be set
to %ORAWEB_HOME%/jdk.

THREADS_FLAG (UNIX only) Whether the Java Virtual Machine should use native
threads or not. This is set to “native ”. This value is required.
Creating the Deployment Information File 12-15

Configuring the ECO/Java Application
Java Environment (server level)
This form enables you to specify name-value pairs for the entire application. If you
want name-value pairs to be visible only for an object, use the Java Environment
(object level) form.

These name-value pairs are read from the ECO.APP file when you install your
application.

Transaction Property (server level)
An application can be enabled or disabled. If enabled, transactional DADs can be
specified for the application. See Chapter 14, “Transactions in ECO/Java Objects”
for details.

Timeout (application level)
When an application instance has been idle for the specified duration (when no
object is alive and all home interfaces are idle), the application server can sever the
connection between the client and the application instance. The timeout is specified
in seconds and its default value is 3600 or 1 hour. After severing the connection, the
application server can use the application instance to service another client or it can
destroy the instance.

This timeout feature is intended to free up instances when clients terminate abnor-
mally and do not release the application instance themselves

Minimum and Maximum Number of Instances (application level)
When a Java Virtual Machine is started, it creates the specified minimum number
of application instances. As more clients arrive beyond the minimum, the Java Vir-
tual Machine creates more application instances up to the the maximum number
specified in the min/max setting. This is in contrast with the other tuning mode,
which is priority-based and discussed earlier in this section.

Authentication String (application level)
To protect an application with an authentication server scheme, you assign an
authentication string to the application. The authentication string has the following
format:

<scheme>(<realm>) [{"|" | "&"} & <scheme>(<realm>) ...]

Refer to "Security for IIOP-based Applications" in the Oracle Application Server Secu-
rity Guide for details.
12-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Re-deploying and Reloading Applications
Java Environment (object level)
This form enables you to specify name-value pairs for the object. If you want name-
value pairs to be visible to the entire application, use the Java Environment (server
level) form. These name-value pairs are read from the deployment descriptors
when you install your application.

Timeout (object level)
When an object instance has been idle for the specified duration (when no client
has made a request for the specified time), the application server can sever the con-
nection between the client and the object instance. The timeout is specified in sec-
onds. The default, value is 0, is to use the same timeout value specified for
application instances.

Re-deploying and Reloading Applications

Re-deploying Your ECO/Java Application
If you modify your application, you need to re-deploy the application using the
Oracle Application Server Manager or the oasdeploy utility described in Chapter 8.

To re-deploy the application:

1. Stop any running processes of the ECO/Java application that you need to re-
deploy.

2. Re-deploy the application. This time, choose the "Force" option when redeploy-
ing your application. Refer to “Deploying your ECO/Java Application” on
page 12-10 for detailed instructions.

3. Select “All” in the Oracle Application Server Manager and click the reload icon

 so that the appropriate components of Oracle Application Server are noti-
fied. You do not have to re-start the application server.

Reloading Your ECO/Java Application
If you change the configuration of the application using the Oracle Application
Server Manager, you only need to reload the configuration data.

Note: To use the command line to deploy or re-deploy your appli-
cation, you need to use the oasdeploy utility. Refer to the
Chapter 8, “Deploying Applications Using oasdeploy” chapter.
Creating the Deployment Information File 12-17

Improving Performance
To reload the configuration data, select “All” in the Oracle Application Server Man-

ager and click the reload icon so that the appropriate components of Oracle
Application Server are notified. You do not have to re-start the application server.

Improving Performance
This section describes how you can improve the performance of ECO/Java applica-
tions.

Just-In-Time Compiler
To provide portability on different platforms, Java uses an interpreter that compiles
Java programs into bytecodes, which are instructions for the Java Virtual Machine.
Each platform implements the virtual machine in software, which interprets the vir-
tual machine instructions when a Java program is executed. Therefore, the byte-
codes compiled from a Java program do not depend on any particular platform and
they can be executed on any machine.

A Java program usually runs slower than the same program compiled to native
machine instructions. This is the performance penalty paid to achieve portability.

It is possible to compile the bytecodes into native machine instructions of the hard-
ware platform. By doing so, the same set of codes can be executed much faster. The
cost of this speed-up is the time spent to compile the instructions.

This compilation is called Just-In-Time (JIT) compilation because it does the compi-
lation at the moment when the Java program is about to be executed. Compilation
needs to occur only once; however, the recompiled instructions can be executed
multiple times. Many JIT compilers recompile virtual machine instructions only
once after the corresponding Java method is invoked for the first time, and cache
the recompiled instructions until they exit. The Java interpreter defines a standard
interface so that any JIT compiler can be plugged into it.

The following figure shows how a JIT compiler works with ECO/Java objects:
12-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Improving Performance
Figure 12–2 Just-In-Time compilation

Disabling the JIT Compiler
Oracle Application Server includes a JIT compiler by default and is enabled in the
Oracle Application Server environment. If you want to disable the JIT compiler, per-
form the following steps:

1. In Oracle Application Server Manager, display the Environment Variables form
(Figure 12–3) for your ECO/Java application.

2. Set the JAVA_COMPILER environment variable to “NONE”.

Note: JIT compiled code does not provide line number informa-
tion when an exception stack is printed. If you are debugging your
application, you may want to disable the JIT compiler to be able to
trace problems in your code.

ECO/Java Server

JIT compiler

Machine

foo.class

Cached bytecodes

Bytecodes

Bytecodes

Native machine instructions
Creating the Deployment Information File 12-19

Debugging ECO/Java Applications
Figure 12–3 Environment variables form

Setting Performance Settings for Application Instances
You can get better performance from your applications if housekeeping tasks such
as starting up the Java Virtual Machine are done before requests arrive. This
enables the application server to process requests faster.

The first request to an application can seem to take longer than subsequent
requests; this is because Oracle Application Server starts the Java Virtual Machine
only when it receives the first request for an application instance. Subsequent
requests are serviced by the already running virtual machine.

You can avoid this performance hit by doing the following:

■ Set the number of initial startup servers or the minimum number of application
instances to be greater than 0. This causes Oracle Application Server to start up
the Java Virtual Machine with the specified number of server processes or
application instances when an application is deployed.

See the Performance Guide for more information on both modes.

Debugging ECO/Java Applications
You should debug your ECO/Java application as much as possible on your devel-
opment platform before trying to debug it on the application server deployment
platform. Debugging on a development platform (for example, a Java IDE such as
Oracle JDeveloper) is easier as you are working in a more controlled environment,
which allows you to determine and fix problems more efficiently.

Oracle JDeveloper provides tighter integration to the application server than other
IDEs. One of the advantages it provides is local debugging facilities for ECO/Java
objects. See the Oracle JDeveloper documentation for details.
12-20 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Debugging ECO/Java Applications
After you have tested and debugged ECO/Java objects on your development plat-
form, you deploy and test them on the application server. The application server
provides debugging facilities in the form of logging messages; it does not provide
remote debugging (such as debugging across different Java Virtual Machines).

The Logger Class
The oracle.oas.eco.Logger Class enables ECO/Java objects to access the application
server’s logger service, which can write messages to a file or database. To get a Log-
ger object, use JNDI with the URL prefix “oas_service:logger”.

Log Files
ECO/Java objects can write messages to the log file that is used by the application
server, or they can write to a different log file.

■ To write messages to the application server’s log file, you do not have to do
anything. By default the logging service writes messages to the log file defined
by the Logging Directory and the Log File fields in the System Logging form.
To display this form in the Oracle Application Server Manager, click website40/
Oracle Application Server/Logging/System.

■ To write messages to a log file specifically for the ECO/Java application, you
specify the log file in the Logging form. To display this form in the Oracle
Application Server Manager, click website40/Applications/<appname>/Con-
figuration/Logging. The log file specified in this form is used only by the
objects in this application.

See the logging chapter in the Administration Guide for more information.

Severity Levels
The Logger class writes messages only when they are at or below the severity level.
For example, if you set the severity level of the application server to 7, only mes-
sages with severity level of 7 or lower are written to the log.

You set the severity level for the application server as a whole in the Severity Level
field in the System Logging form. To access this form in the Oracle Application
Server Manager, click website40/Oracle Application Server/Logging/System.

You can override the severity level of the application server for individual applica-
tions. You might want to do this if you want to see more messages only from spe-
cific applications. For example, you can set the severity level of the application
server as a whole to a low value, such as 1, but set the severity level of the applica-
tion you are debugging to a high value, such as 10.
Creating the Deployment Information File 12-21

Debugging ECO/Java Applications
To override the severity level, you use the Logging form for the ECO/Java applica-
tion. To access this form, click website40/Applications/<appname>/Configura-
tion/Logging.

To set the severity level of messages, call the setSeverity() method in the ora-
cle.oas.eco.Logger instance. The severity level is then set for all messages
sent from this ECO/Java object instance until you change it by calling the setSever-
ity() method again. You can determine the current severity level by calling getSever-
ity(). The default severity level is Logger.LOG_SEVERITY_DEBUG.

Logging Modes
The logger can write messages as they occur or it can collect them and write them
in batches. Batch mode is more efficient because the logger does not have to access
the log file as many times as in non-batch mode. However, in batch mode, if the sys-
tem fails, messages in the logger that are waiting to be written to the log file may
not be written. Also, when you are debugging an application, you might want to
set the batch mode to off so that you can see messages in the log file with minimal
delay.

You set the batch mode in the Logging form in the Oracle Application Server
branch:

Figure 12–4 Logging form
12-22 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Developing Clients for ECO/Java A
13

Developing Clients for ECO/Java

Applications

This chapter describes how to create clients for ECO/Java applications. A client
needs to obtain an object reference to a object before it can invoke methods on the
object. The way to obtain the reference varies with the type of client (e.g. stand-
alone clients have different requirements for obtaining object references than applet
clients). These differences are explained in this chapter.

Contents
■ Overview

■ Getting the Object Reference for an Object

■ Invoking Methods on the Object

■ Destroying an Object

■ JNDI Supported Features

■ Files Required by Clients

Note: At this time, Enterprise JavaBeans are defined to be used
by Java clients only. This is due to the requirement of supporting
parameter passing using object by value semantics. If your applica-
tion must be accessed from non-Java clients, we suggest develop-
ing and deploying your application using the ECO/Java
component model in Oracle Application Server.
pplications 13-1

Overview
■ APPLET Tags

■ Creating Callbacks

■ Performance Features of the JNDI Provider

Overview
Clients of ECO/Java applications can be:

■ Java applications

■ Java applets running in browsers

■ Objects in the same or other ECO/Java applications

■ JServlet cartridges

■ Any CORBA-compliant client

ECO/Java applications and their objects are CORBA objects, which are registered
with the application server’s ORB. To access these objects, clients use Internet Inter-
ORB Protocol (IIOP), instead of HTTP. Clients need an ORB on the client-side to
access ECO/Java applications. If your client is a Java applet, you may be able to use
a compatible ORB in the browser or download a pure Java ORB as part of your
applet.

ECO/Java applications are not invoked in the same manner as HTTP-based Oracle
Application Server applications. The client needs to get an object reference to the
home interface of an object, which it can then use to create an ECO/Java object
through which to invoke methods on the object. To get an object reference, the cli-
ent uses the Java Naming and Directory Interface (JNDI). After the client is done
with the object instance, it calls the remove() method to destroy it. A summary of
the process is as follows:

1. Get the object reference for the home interface of the object.

2. Invoke create() on the home interface. This instantiates the object as an
ECO/Java object.

3. Invoke remote interface methods in the ECO/Java object.

4. After the ECO/Java object is no longer needed, invoke remove() to destroy it.

Object methods may return other ECO/Java objects or any other RMI-compatible
non-Remote value, and clients are free to decide how they want to display the
return values to the user. For example, one client can simply display the value in a
text area, while another client can display it graphically in a chart.
13-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Getting the Object Reference for an Object
Getting the Object Reference for an Object
Before a client can invoke a method on an object, it must first get a reference to the
home interface of the object and invoke the create method on the home interface.
To do this, the client uses JNDI which provides a Naming Server to service look up
requests.

JNDI in the Application Server
JNDI (Java Naming and Directory Interface) consists of a set of APIs defined by Jav-
aSoft. The APIs provide directory and naming services independent of the underly-
ing directory server. JNDI consists of the JNDI API and JNDI SPI.

■ JNDI API—A client API that allows Java applications to access a variety of
directory services.

■ JNDI SPI—An interface that allows service providers to plug in their implemen-
tation of a naming or directory server.

The application server includes a JNDI naming server SPI, which allows JNDI cli-
ents to get object references to EJB and ECO/Java home interfaces.

For more information on JNDI, see the JavaSoft web site (http://www.javasoft.com).

Navigating the Name Space
A client provides a name to the server and gets back an object reference if the name
resolves to a component. Names are relative to a specific context. You can lookup
the name relative to the initial context or to a retrieved relative context.

When you use JNDI to get an object reference for a home interface, your client does
the following:

1. Set up the initial context factory property.

2. Obtain the initial context.

3. Provide a string or JNDI composite name that identifies an object or a relative
context that you can retrieve several objects from.

The JNDI name space for the application server is a hierarchical name space. It
is defined using the prefix of "oas :" for its URL protocol. The name following
the "oas :" prefix is the combination of host, application, and object names
defined in the deployment file.
Developing Clients for ECO/Java Applications 13-3

Getting the Object Reference for an Object
4. Execute lookup() off of the initial context (or any relative context) to resolve
the name to an object reference. Notice that the name space is read-only for cli-
ents.

You can execute lookup off of the initial context to retrieve a relative context.
Then, you can execute multiple lookup invocations off of the relative context
for different JNDI names.

The JNDI object name can be given to the lookup method as either a String
identifier or CompoundName object.

a. String identifier: The string contains the name of the ECO/Java application
and the name of the object’s home interface. The application name and the
home interface name are hierarchical names using “/” as the separator. The
full name of a home interface is the combination of the application and
home interface names separated by “/”:

<application name> / <object’s home interface name>

For deployment information, see Chapter 12, “Creating the Deployment
Information File”.

b. JNDI compound name: You can create a CompoundName object with the
JNDI object name, prefixed with "oas :".

Accessing the Naming Server from a Client
The client initializes the naming server and retrieves the initial context from this
server. The following sections list how each type of client performs the initializa-
tion and retrieval process.

■ Java Application Client

■ Java Applet Client

■ ECO/Java and JServlet Clients

Application Type JNDI URL Naming Protocol

Application The object is identified by oas://<hostname>[:<port>]/
<application_name>/<object_name>

Applet The object is identified by oas:///<application_name>/
<object_name>
13-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Getting the Object Reference for an Object
Java Application Client
The client performs the following steps:

1. Initialize the naming server by specifying in an environment variable of type
Hashtable the Java package that contains the naming server. The
javax.naming.Context. INITIAL_CONTEXT_FACTORY property must
specify the initial context factory class "oracle.oas.nam-
ing.jndi.RemoteInitCtxFactory" .

Hashtable env = new Hashtable();
env.put(javax.naming.Context. INITIAL_CONTEXT_FACTORY,
" oracle.oas.naming.jndi.RemoteInitCtxFactory ");

2. Get the initial context. You can retrieve the initial context in one of two ways:

a. Provide the JNDI package within an environment variable to the
InitialContext constructor.

javax.naming.Context initialContext = new InitialContext (env);

b. Provide the JNDI package within system properties from the command
line. You define system properties using the -D option in the java com-
mand.

prompt> java -Djava.naming.factory.initial=
"oracle.oas.naming.jndi.RemoteInitCtxFactory" myClientApp

Within your code, you still need to create an InitialContext, but you do not
provide the environment variable to it as a parameter.

javax.naming.Context initialContext = new InitialContext ();

Java Applet Client
The client performs the following steps:

1. Initialize the naming server by specifying the following two properties:

a. The oracle.oas.naming.jndi.appletinstance property. The value
of the property is the applet instance, which is a Java.lang.Applet
object.

b. The Java package that contains the naming server. The javax.nam-
ing.Context. INITIAL_CONTEXT_FACTORY property must specify the
initial context factory class "oracle.oas.naming.jndi.RemoteIn-
itCtxFactory" . The environment variable is of type Hashtable .
Developing Clients for ECO/Java Applications 13-5

Getting the Object Reference for an Object
// code in the applet
Hashtable env = new Hashtable();

// "this" refers to the applet
env.put("oracle.oas.naming.jndi.appletinstance" , this);

env.put(Context.INITIAL_CONTEXT_FACTORY,
" oracle.oas.naming.jndi.RemoteInitCtxFactory ");

2. Get the initial context. You can retrieve the initial context by providing the
JNDI package within an environment variable to the InitialContext con-
structor.

Context initialContext = new InitialContext (env);

ECO/Java and JServlet Clients
When the client of an object is another object or a JServlet application, the Ini-
tialContext should not pass javax.naming.Con-
text.INITIAL_CONTEXT_FACTORY in the environment. The application server
presets this property in the JVM for this type of client. You can get the initial con-
text with no arguments.

// get the initial context without specifying an environment
javax.naming.Context initialContext = new InitialContext ();

Identify and Lookup the Desired Object
The client invokes the lookup() method in the InitialContext class to retrieve
one of two things:

■ The object reference for the home interface of an object

■ An intermediate JNDI context

The lookup() method takes one parameter, which can be either:

■ A string that specifies the name of a home interface or an intermediate context.

■ A JNDI CompoundName object with the home interface name or intermediate
context name, prefixed with "oas :". See the JavaSoft JNDI documentation for
details on usage of Names and CompoundNames.

Note: See the JServlet Developer’s Guide for more information on
invoking EJBs with JServlet applications.
13-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Getting the Object Reference for an Object
The following gives the basics for identifying and looking up the object reference.
However, each client type has different requirements for specifying the name for
the lookup. After you understand the basics, see each client type for its particular
requirements:

BASICS:
■ Specifying a String for the Home Interface Name

■ Specifying a String for an Intermediate Context

CLIENT TYPE REQUIREMENTS:
■ Java Application Client

■ Java Applet Client

■ ECO/Java Client

■ JServlet Client

Specifying a String for the Home Interface Name
The string parameter has the following format:

oas:// <host>:<port>/<application>/<object>

Note: We do not present an example for the CompoundName res-
olution. See the JNDI documentation for more information.

<host> The machine on which the listener component of the
application server runs.

<port> Port number where the listener listens for requests. If not
specified, the default is 80.

/<application>/<object> The hierarchical path to the object. For example, if you
have an ECO/Java application whose name is “eco/myS-
tack”, and the application contains an object with home
interface named “ServerStackHome”, the absolute name
for the object would be: oas://host2/eco/myStack/Server-

StackHome
Developing Clients for ECO/Java Applications 13-7

Getting the Object Reference for an Object
This name assumes the application is registered with the listener running on
machine “host2” on port 80. Graphically, the naming hierarchy can be depicted as
in Figure 13–1.

Figure 13–1 Sample objects in an application server environment

The name “oas://host2/eco/myStack/ServerStackHome ” refers to the
home interface of the ServerStack object in the application myStack. The host1 and
host2 refer to the machines that run listener components of the application server.
The listeners can be on the same or different application server sites. Note that the
application name can be made of components separated by “/” (that is,
“application_1/sub_application_1 ”).

The string can be used in the lookup() method as follows:

ServerStackHome stackHome = (ServerStackHome)
PortableRemoteObject.narrow(initialContext.lookup(

" oas://host2/eco/myStack/ServerStackHome "),
ServerStackHome.class);

Note: The PortableRemoteObject class is used to narrow the
returned home interface as a RMI remote interface. See “Using Por-
tableRemoteObject for Narrowing” on page 13-12 for information
on how to use PortableRemoteObject for narrowing your
returned object references.

Application Server

host1 host2

application_1

object_1 object_2

myStack

ServerStackHome

sub_application_1

eco
13-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Getting the Object Reference for an Object
Specifying a String for an Intermediate Context
The lookup() method returns a Context object if the name does not resolve com-
pletely to an object. For example, if you call lookup() with a name that resolves
only to the ECO/Java application:

// resolve only to the ECO/Java application
javax.naming.Context appCtx = (Context) initialContext.lookup(

" oas://host2/eco/myStack ");

The method returns a Context object that you can use in subsequent lookup()
calls to retrieve object references to objects in the application. For example, the
appCtx context object can be used in the following statement:

// use a relative name, context is from the first lookup()
ServerStackHome stackHome = (ServerStackHome)

PortableRemoteObject.narrow(appCtx .lookup(
" ServerStackHome "),ServerStackHome.class);

This second lookup() call is made with respect to the context object that was
returned from the first lookup() call. The name is a relative name.

Java Application Client
Use one of two ways to retrieve the object reference for an object.

■ Create an absolute name leading to the object, then lookup() the object (home
interface of object). The following example creates the absolute name of " oas:/

/host2/eco/myStack/ServerStackHome " and performs a lookup on this
name.

ServerStackHome stackHome = (ServerStackHome)
PortableRemoteObject.narrow(initialContext. lookup (

" oas://host2/eco/myStack/ServerStackHome "),
ServerStackHome.class);

■ Create an absolute name leading to an application or another intermediate con-
text, followed by subsequent lookup() calls that point to the object. The fol-
lowing example retrieves the intermediate context to the application mystack

Note: The URL notation "oas :" is only required when doing a
lookup from the initial context. Once you have an intermediate con-
text, the JNDI provider is known and the names can be given
directly.
Developing Clients for ECO/Java Applications 13-9

Getting the Object Reference for an Object
with “oas://host2/eco/myStack ”. It then performs the lookup for the
object by providing the home interface name, ServerStackHome.

javax.naming.Context appCtx = (Context) initialContext.lookup(
" oas://host2/eco/myStack ");

ServerStackHome stackHome = (ServerStackHome)
PortableRemoteObject.narrow(appCtx. lookup (

" ServerStackHome "),ServerStackHome.class);

Java Applet Client
For applet clients, you do not need to set the host and port information explicitly
within the JNDI lookup name. When you set the environment variable with applet-
instance, this marks where the applet is coming from. Thus, the host and port are
known. The following example shows the absolute path name of "oas:///eco/
myStack/ServerStackHome" . Notice that it does not include the hostname.

// The host and port info do not appear in the name. For clients
// that are applets, the host and port information are the same as the host:port
// from which the applet was downloaded. Note that three "/" are used in the
// lookup name.
ServerStackHome stackHome = (ServerStackHome)

PortableRemoteObject.narrow(initialContext.lookup(
" oas:///eco/myStack/ServerStackHome "),ServerStackHome.class);

ECO/Java Client
An ECO/Java object tries to access another ECO/Java object within the application
server. The JNDI name provided within the lookup is different depending on
whether your object is accessing another object within the same application or an
object that exists within another application. The JNDI provider allows relative
names for your lookup.

Accessing an Object in the Same Application If the target home interface and the client
object belong to the same application you only need to specify the name of the
home interface of the server object relative to the application. The following exam-
ple shows that the JNDI lookup name would be "oas:ServerStack2Home" ,
which does not include the hostname, eco identifier, or application name.

// ServerStack2 is the object.
// Initial Context is assumed to have been specified as above.
ServerStack2Home stack2Home = (ServerStack2Home)

PortableRemoteObject.narrow(initialContext.lookup(
" oas:ServerStack2Home "),ServerStack2Home.class);
13-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Getting the Object Reference for an Object
Accessing an Object in a Different Application To access an object in another application,
you need to specify the name of the application and the home interface name of the
object in the following format:

oas:/app/home_interface_name

You do not need to provide the host and port information because the application
server knows how to access the current site.

ServerStack2Home stack2Home = (ServerStack2Home)
PortableRemoteObject.narrow(initialContext.lookup(

" oas:/app_name/ServerStack2Home "),ServerStack2Home.class);

If the home interface belongs to another Oracle Application Server site (different lis-
tener and port), host and port information is needed:

ServerStack2Home stack2Home = (ServerStack2Home)
PortableRemoteObject.narrow(initialContext.lookup(

" oas://site2/host2/app_name/ServerStack2Home "),
ServerStack2Home.class);

JServlet Client
The JNDI name provided within the lookup is different depending on if your JServ-
let cartridge is accessing an object within this Oracle Application Server site or an
object that exists on another Oracle Application Server site. The following example
shows that you do not include the name of the host when accessing an object
located within the same Oracle Application Server.

// object reference of home interface of object
// object is on same application server as client,
// no need to specify host and port
ServerStackHome stackHome = (ServerStackHome)

PortableRemoteObject.narrow(initialContext.lookup(
" oas:///eco/myStack/ServerStackHome "),ServerStackHome.class);

You need to specify the host and port information only if the object and the JServlet
cartridge are running on different application server sites.

// host and port needed (default port 80 used)
ServerStackHome stackHome = (ServerStackHome)

PortableRemoteObject.narrow(initialContext.lookup(
" oas://host2/myStack/ServerStackHome "),ServerStackHome.class);
Developing Clients for ECO/Java Applications 13-11

Invoking Methods on the Object
Using PortableRemoteObject for Narrowing
The main purpose of the PortableRemoteObject class is to narrow or typecast
RMI remote object references. When JNDI returns local objects, such as Logger , the
object returned is a concrete datatype. It can be assigned to a variable of the
expected type by using the Java casting operator.

However, the same is not true for references to remote objects, such as the home or
remote interfaces discussed in this chapter. In this case, the object being returned
needs to be narrowed to a specific remote interface type before casting is possible.
The PortableRemoteObject.narrow method passes as an argument the remote
reference and the class type expected to be returned. This method will return the
correct stub for the object that, at this point, can now be assigned using the casting
operator.

PortableRemoteObject provides export and unexport methods that are used
for activating and deactivating CORBA implementations that are used as client call-
backs.

These services are provided directly by CORBA; however, using PortableRemo-
teObject allows you to compile your code without the presence of the CORBA
stubs and skeletons. This makes your code easier to migrate to EJB for future con-
cerns.

Invoking Methods on the Object
Once you have the reference to a home interface, you can instantiate an ECO/Java
object (remote interface) by invoking create() through the home interface. After
that, the ECO/Java object’s business methods can be invoked. For example:

// assume that stackHome contains the reference to ServerStackHome
ServerStackRemote stackRemote = stackHome.create();

// push and pop are business methods
stackRemote.push("12"); // store the value "12" on the stack
int val = stackRemote.pop(); // remove the value from the top of the stack

Note: Method invocations to the same instance must be invoked
sequentially. If a different client thread makes an invocation while
the first is executing, an exception is thrown to the second invoca-
tion.
13-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

JNDI Supported Features
Destroying an Object
When a client no longer needs to refer to an object, it calls the remove() method
on the object. The ORB then releases the object instance (remote interface) so that
the JVM can clean it up during garbage collection. The remove() method takes no
parameters.

// release the object
stackRemote.remove();

JNDI Supported Features
The JNDI implementation in the application server provides read-only access to the
JNDI naming service. Users do not have permission to modify the contents of the
naming service using the implementation’s JNDI SPI. Only the following features
are available:

■ A complete implementation of lookup including lookup of partial names to
subcontexts using lookup() .

■ Listing the contents of the naming service using list() and listBind-
ings() .

■ Access to the Environment object, including the following methods: getEnvi-
ronment() , addToEnvironment() , removeFromEnvironment() .

■ Retrieval of a name parser using getNameParser() . This is used with Com-
poundName.

■ Methods for composing the name of a context with a name relative to this con-
text (for example, using composeName()).

■ Closing a previously accessible context.

■ Implementation of both String and Name versions of all supported methods.

In addition, you are required to setup certain JNDI properties for applets, for secu-
rity, or for setting the JNDI package name. These properties are listed in different
parts of this book, as shown below in the table:

Property Discussed in...

Setting the package
name

Set within javax.naming.Con-
text.INITIAL_CONTEXT_FAC
TORY or java.naming.fac-
tory.url.pkgs

“Accessing the Naming
Server from a Client” on
page 13-4
Developing Clients for ECO/Java Applications 13-13

Files Required by Clients
Disallowed JNDI Features
The JNDI implementation in the application server does not allow client access to
the following JNDI methods: bind() , rebind() , unbind() , rename() , cre-
ateSubContext() , destroySubContext() . All forbidden methods throw a
javax.naming.NoPermissionException exception.

The SPI implementation in the application server provides a read-only access to the
name space and therefore updating the bindings is not relevant.

Files Required by Clients
■ Files Required by Java Clients

■ Files Required by Non-Java Clients

■ Files Required by Applets

Describing the
client as an applet

oracle.oas.naming.jndi.
appletinstance

“Java Applet Client” on
page 13-5

Setting up security Set javax.naming.Context.
SECURITY_PROTOCOL,
SECURITY_PRINCIPAL, and
SECURITY_CREDENTIALS

"Setting Authentication for
EJB or ECO/Java Clients"
in Chapter 5 of the Security
Guide

Note: The JNDI properties can be set in one of three ways: pro-
grammatically, on the command line through the "-D" option, or
through the <PARAM> tag within an applet.

Note: Look up operations on the JNDI initial context can be time
consuming. If your clients have to look up multiple home inter-
faces, use the initial context to look up a common intermediate con-
text and then look up home interfaces using this relative
intermediate context.

Property Discussed in...
13-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Files Required by Clients
Files Required by Java Clients
Clients must have access to the object client APIs as well as the stubs generated dur-
ing deployment. The APIs and the stub files are located in:

■ $ORAWEB_HOME/classes/ecoapi.jar

■ $ORAWEB_HOME/../apps/eco/<appName>/_client.jar

If your client is a non-Java application, you must retrieve the following file and
compile the stubs for your language from it:

■ $ORAWEB_HOME/../apps/eco/<appName>/OASClientInterfaces.idl

You should add these files to the CLASSPATH variable.

For clients using the ORB, you must also include the following files in CLASSPATH:

■ $ORAWEB_HOME/classes/oasoorb.jar

Files Required by Non-Java Clients
Clients of ECO/Java objects can be non-Java clients. For example, clients can be a
C++ client or a Perl script running in a LiveHTML application.

To access ECO/Java objects from non-Java clients, you have to do the following:

1. Retrieve the interfaces IDL, $ORAWEB_HOME/../apps/eco4j/<appName>/
OASClientInterfaces.idl. This file includes the IDL files for accessing the ECO/
Java application.

2. Create the client stubs and skeletons. You must compile the OASClientInter-
faces.idl file, which generates the appropriate IDL stubs and skeletons from
this IDL file for your language.

Note: You can use oasdeploy to download the JAR file containing
the client stubs required by a Java client application to communi-
cate with the server application. The client should have Oracle
Application Server 4.0.8 or JDeveloper 2.0 installed. Use the oas-
deploy -c option to indicate the directory in which to download
the JAR file to. For example,

oasdeploy -a myStack
-u admin/adminpasswd@node1:8888 -c /client/stubs
Developing Clients for ECO/Java Applications 13-15

Files Required by Clients
■ For Perl stubs and skeletons, you can use perlidlc, an IDL-to-Perl compiler
bundled with Oracle Application Server. See the Perl Developer’s Guide for
more information on this compiler.

prompt> cd $ORAWEB_HOME/../apps/eco4j/myApp
prompt> perlidlc -i -I $ORACLE_HOME/public -I $ORAWEB_HOME/../apps/
eco4j/myApp $ORAWEB_HOME/../apps/eco4j/myApp/OASClientInterfaces.idl

■ For C++ stubs and skeletons, use the oasoidlc compiler that is discussed in
“Using the IDL-to-Java Compiler” on page 17-7. This compiler has a C++
option.

% oasoidlc -g cplus -i -I $ORACLE_HOME/public -I $ORAWEB_HOME/../apps/
eco4j/myApp -t $ORAWEB_HOME/../apps/eco4j/myApp/OASClientInterfaces.idl

Note that non-CORBA exceptions cannot be accessed directly by non-Java clients.
Metadata, Handles, and Java exceptions are transported in IDL using two represen-
tations: one for Java clients and another for non-Java clients.

Files Required by Applets
The required files must be specified in the archive attribute of the <APPLET> tag.
The required files are:

■ the JAR files mentioned in the previous section.

■ applet class files

Note: If your target browser does not support multiple jar files in
the archive attribute of the APPLET tag, you will need to create a
single jar file that contains all of the class files required by the
applet.
13-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating Callbacks
APPLET Tags
Applet clients can use the pure Java version of the Oracle Application Server ORB
by using the following parameters in the <APPLET> tag:

<APPLET code=" myApp.TextFuncsDemo .class" codebase="http:// myserver / applet_dir "
archive="ejbapi.jar,_client.jar,oasoorb.jar, applet_class_files .jar"
width=100 height=100>

<PARAM name="org.omg.CORBA.ORBClass" value="oracle.oas.orb.CORBA.ORB">
<PARAM name="ORBdisableLocator" value="true">
</APPLET>

■ The codebase attribute has to be an absolute URL; it cannot be “.” (current
directory).

■ The archive attribute must contain the files required for clients in the proper
order. Copy these files into the codebase directory. If you have more than one
_client.jar file, use unique filenames in the codebase directory.

■ The org.omg.CORBA.ORBClass parameter indicates the primary ORB class.
If you do not use the pure Java version of the ORB, specify the proper class for
your ORB.

■ The ORBdisableLocator parameter is required if you are not using Visi-
genic’s Gatekeeper. If it is not specified and the client uses a Visigenic ORB, the
client’s ORB will always expect Gatekeeper.

■ The JNDI SPI implementation is able to automatically extract many of its envi-
ronment attributes from the tag <PARAM>. Exceptions are
INITIAL_CONTEXT_FACTORY and oracle.oas.naming.jndi.appletin-
stance .

Creating Callbacks
A client can create a callback by enabling the ECO/Java server object to invoke a cli-
ent remote interface. Basically, the ECO/Java server object invokes the client’s
remote interface, as if it were just another object within the application server. The
client needs to provide its remote interface within the ECO/Java JAR file as if it
were an object.

Note: To run applets that invoke bean objects, browsers must sup-
port Java 1.1.6. Oracle Application Server does not support Java 1.2
at this time.
Developing Clients for ECO/Java Applications 13-17

Creating Callbacks
Once the ECO/Java has access to the remote interface, the client passes the object
reference of the client object to a server ECO/Java object. This client object must be
a CORBA-based object. The server ECO/Java object uses the object reference to
invoke methods on the client CORBA object. Figure 13–2 depicts this relationship.

Figure 13–2 An ECO/Java object invokes methods on a client-side CORBA object

Create the Client-side CORBA object
1. Create a remote interface for the CORBA object. The remote interface must fol-

low the guidelines for ECO/Java objects.

2. Include the remote interface file in the ECO/Java application JAR file before
deployment. This enables the application server to generate an IDL file from
the client remote interface file.

3. Implement the methods specified in the remote interface for the CORBA object.
The remote interface’s implementation class has to extend the skeleton, which
is the _<remoteInterface>ImplBase abstract class.

4. Pass a reference to an instance of your object as part of the parameters for your
SessionBean. The stateful SessionBean can keep the reference and use it to
make callbacks to the client.

5. You can use PortableRemoteObject.unexport () to deactivate your call-
back. You can use PortableRemoteObject.export () to activate your object
before being passed as an argument. However, most ORBs activate objects
when they are sent as arguments.

Create the Callback within the Server-side ECO/Java object
1. Implement a method that receives the CORBA object reference.

2. Store the reference in a variable.

3. Use the reference to invoke methods on the CORBA object.

Client ECO/Java object

CORBA object

1. Passes a reference to the CORBA object

2. Uses the reference to invoke methods on

the CORBA object
13-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating Callbacks
Example
In this example, the client GreetMe instantiates a CORBA object by calling the new
operator and gives the object reference to the ECO/Java object. The ECO/Java
object stores the object reference in an instance variable.

The client then calls a method on the server-side ECO/Java object, which calls a
method on the client-side CORBA object. Figure 13–3 depicts these steps.

Figure 13–3 Sequence of commands issued by the client in the example

The following is the code for both sides:

■ ECO/Java Object

■ Client

CORBA

Client Server

1. Calls JNDI to get a reference to the ECO/Java home interface

3. Calls a method on the ECO/Java object.

4. Instantiates a CORBA object.

5. Passes the object reference of the CORBA
object to the ECO/Java object.

6. Calls a method on the ECO/Java object.

object

7. Invokes a method on the
CORBA object.

ECO/Java
object

2. Invokes create from the home interface to create the object
Developing Clients for ECO/Java Applications 13-19

Creating Callbacks
ECO/Java Object
The ECO/Java object has the following files:

ServerHelloWorldHome.java This file contains the home interface. This includes the
create method, which instantiates its own remote interface for the ECO/Java
object.

package Greetings;

public inteface ServerHelloWorldHome extends oracle.oas.eco.ECOHome {
public ServerHelloWorldHome create ()

throws oracle.oas.eco.CreateException;
}

ServerHelloWorldRemote.java This file defines the remote interface for the ECO/Java
object. It contains the following methods:

■ registerCallbackObject () —saves the object reference of the CORBA
object for the callback to the client-side CORBA object

■ useCallbackObject () —uses the object reference to invoke methods on the
client-side CORBA object

package greetings;

public interface ServerHelloWorldRemote extends oracle.oas.eco.ECOObject {
public String getMessage();
public void registerCallbackObject (CallbackHelloWorldInterface p_chwi);
public String useCallbackObject ();

}

ServerHelloWorld.java This file contains the implementation for the ECO/Java object.
It implements the remote interface, ServerHelloWorldRemote.java.

Table 13–1 Files for the ECO/Java object

File Description

ServerHelloWorldHome.java The home interface for the ECO/Java object

ServerHelloWorldRemote.java The interface for the ECO/Java object.

ServerHelloWorld.java The implementation of the ECO/Java object.

CallbackHelloWorldInterface.java The interface for the CORBA object.

ECO.APP The deployment information file.
13-20 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating Callbacks
package greetings;

public class ServerHelloWorld {
CallbackHelloWorldInterface _chwi = null;

// constructor with no arguments
public ServerHelloWorld() {
}

// A method that a client can invoke
public String getMessage() {

return "ServerHelloWorld.getMessage(): A quick brown fox jumps over a
lazy dog.";

}

// The client calls this method to pass in the object reference to the
 // client-side CORBA object. The method stores the value in the
 // _chwi instance variable.

// The variable is used by the useCallbackObject() method.
public void registerCallbackObject (CallbackHelloWorldInterface p_chwi) {
 _chwi = p_chwi;

 }

 // The ECO/Java server object can invoke a method on the client-side
 // CORBA object.
 public String useCallbackObject () {
 String _str;

 if (_chwi == null)
 _str = "No CallbackObject has been registered!";
 else {
 _str = "Invoking method on registered CallbackObject..." +
 System.getProperty("line.separator");
 _str += _chwi.getMessage (); // invoke a method on a CORBA object
 }

 return _str;
 }
}

CallbackHelloWorldInterface.java This file is the remote interface for the client-side
CORBA object. It lists the getMessage method that the ECO/Java object can
invoke.

package greetings;
Developing Clients for ECO/Java Applications 13-21

Creating Callbacks
public interface CallbackHelloWorldInterface extends org.omg.CORBA.Object {
public String getMessage ();

}

ECO.APP This is the deployment information file for the ECO/Java object.

[APPLICATION]
name = ECOCallback

[ServerHelloWorld]
className = greetings.ServerHelloWorld
homeInterface = greetings.ServerHelloWorldHome
remoteInterface = greetings.ServerHelloWorldRemote

Client
The client of the ECO/Java object is a stand-alone Java application that passes the
object reference of the CORBA object to the ECO/Java object. It does this by calling
the registerCallbackObject () method on the ECO/Java object.

The CORBA object is called “CallbackHelloWorld” and its interface is “Callback-
HelloWorldInterface”.

The client has the following files:

GreetMe.java This file is the main client file; it contains the application’s main()
method.

package GreetingsClient;

import java.net.URL;
import java.util.Hashtable;
import javax.naming.*;

Table 13–2 Files for the client

File Description

GreetMe.java Main file for the client.

CallbackHelloWorldInterface.java Interface for the CORBA object.

CallbackHelloWorld.java Implementation of the CORBA object.

ServerHelloWorldHome.java Home interface for the ECO/Java object.

ServerHelloWorldRemote.java Remote interface for the ECO/Java object.
13-22 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Creating Callbacks
import oracle.oas.eco.*;
import oracle.oas.naming.jndi.*;
import greetings.ServerHelloWorldHome;
import greetings.ServerHelloWorldRemote;
import greetings.CallbackHelloWorldInterface;

public class GreetMe {
public static void main(String[] args) {

ServerHelloWorldRemote remoteRef = null;
Hashtable env = new Hashtable();
Context siteContext = null;

try {
String urlStr = args[0];

 //Initialize the JNDI Naming Service and retrieve an initial ctx.
env.put(Context.INITIAL_CONTEXT_FACTORY,

"oracle.oas.naming.jndi.RemoteInitCtxFactory");
Context initialContext = new InitialContext(env);

// args[0] or urlStr is the first argument after the class name.
// It specifies the host that is running the listener component
//of the app server in the form "oas://hostname:port"
siteContext = initialContext.lookup(urlStr);

// lookup home interface and instantiate related remote interface
remoteRef = ((ServerHelloWorldHome)

PortableRemoteObject.narrow(siteContext.lookup(
"/ECOCallback/ServerHelloWorld"),
ServerHelloWorldHome.class)).create();

// Invoke a simple method on ServerHelloWorld ECO/Java.
System.out.println(remoteRef.getMessage());

// Create a new Callback CORBA Object.
CallbackHelloWorldInterface helloWorld =

new CallbackHelloWorld();

// Register it with the ServerHelloWorld ECO/Java.
remoteRef.registerCallbackObject(helloWorld);

// Invoke a method on the ServerHelloWorld ECO/Java which then
 // invokes a method on the Callback Object which was registered in the

// previous step.
Developing Clients for ECO/Java Applications 13-23

Creating Callbacks
System.out.println(remoteRef.useCallbackObject());

System.out.println();
System.out.println("ECO/Java Callback demo has completed

successfully.");
}
catch (java.net.MalformedURLException mfe) {

mfe.printStackTrace(System.out);
return;

}
}

}

CallbackHelloWorldInterface.java This file contains the remote interface for the CORBA
object.

This file is also copied to the ECO/Java object; when you install the ECO/Java
application, the application server generates IDL, stubs, and skeletons from the
interface.

package greetings;

public interface CallbackHelloWorldInterface extends oracle.oas.eco.ECOObject {
 public String getMessage();
}

CallbackHelloWorld.java This is the implementation of the client-side CORBA object.
It contains the methods defined in the remote interface. It extends the skeleton
class, _CallbackHelloWorldInterfaceImplBase .

package GreetingsClient;

public class CallbackHelloWorld extends _CallbackHelloWorldInterfaceImplBase {
public String getMessage() {

return "CallbackHelloWorld.getMessage(): A lazy fox jumps over a
quick, brown dog.";

}
}

ServerHelloWorldRemote.java This file contains the remote interface for the ECO/Java
object. It is the same file as the file for the ECO/Java object.

package greetings;

public interface ServerHelloWorldRemote extends oracle.oas.eco.ECOObject {
public String getMessage();
13-24 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Performance Features of the JNDI Provider
public void registerCallbackObject(CallbackHelloWorldInterface p_chwi);
public String useCallbackObject();

}

Performance Features of the JNDI Provider
The JNDI SPI provider for Oracle Application Server supports co-location, which
increases the performance of your ECO/Java application.

Co-Location of Objects
Co-location guarantees that all of the home interfaces and objects within an applica-
tion that are requested by a particular client reside in the same JVM. By having all
of the objects in the same JVM, the application server reduces interprocess commu-
nication and the number of remote connections on the network. Since all of the
objects associated with a client are co-located, the application server can better man-
age and share the resources used on behalf of the client.

Co-location is accomplished by the use of a cache in the SPI provider. Once a client
using an application is connected to a particular application instance, the SPI uses
its cache to guarantee that any future request for the same application is serviced
by the same JVM. In other words, a lookup is invoked for a context corresponding
to an application name, JNDI associates the client with a particular application
instance in a specific JVM. Any future access to the same application name is
directed to the same application instance.

The Caching Strategy
The behavior associated with the default caching strategy depends on the type of
the client.

Client Applications
The default is to use a static cache. The cache is a static variable. All JNDI requests
use the same cache.

Java Applets
The default is a cache associated with an applet instance. This means that any
objects created anywhere in a particular applet will be calculated.
Developing Clients for ECO/Java Applications 13-25

Performance Features of the JNDI Provider
ECO/Java Objects in Oracle Application Server
The default is to use a cache associated with the application instance in which the
object is executing. This means that all of the objects created by objects belonging to
a client will also be co-located.

JServlets
The default for session-enabled servlets is for the cache to be associated with its ses-
sion. See the JServlet Developer’s Guide for more information.

Cache Cleanup
The association of an application instance with a client ends when the cache is
cleaned up. This happens automatically during one of the following: garbage collec-
tion for the Context , termination of application instances, or execution of finaliz-
ers on exit. Alternatively, the user may break the association programmatically by
executing a Context.close() for the initial context.

Terminating Application Instances
When a cache on a client is released (garbage collected or the context closed), the
application instance is notified that the association has ended. At this point, no cli-
ent may access the home interface through JNDI. Since all objects should have been
removed, the application instance can terminate its association with the client and
be assigned to a new incoming client.

However, a client may not have removed (or destroyed) all of its objects. Instead, it
may have serialized the handle to a object and stored it on a file for later use. In
such cases, the orphan application instance must continue to be active until the rest
of the objects are removed or their timeout expires. At this point, the application
instance association is considered terminated.

When the association is terminated, the JNDI cache for the application instance is
cleaned. The disassociation propagates to all other applications that were created
by objects in the original application instance.

Due to the amount of resources that may be consumed by an orphan application
instance, it is important to remember to remove all of your objects (if possible)
before exiting your client application and to make sure that any objects transitively
created are also removed.
13-26 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Transactions in ECO/Jav
14

Transactions in ECO/Java Objects

This chapter describes how to create transactional ECO/Java objects. You can use
one of two methods to enable transactions within your bean: declarative or pro-
grammatic.

■ Declarative transactions: The ECO/Java runtime performs the transactional
operations on your behalf for the bean.

■ Programmatic transactions: The bean must execute each transactional opera-
tion when appropriate.

Read Chapter 10, “Enabling Transactions” chapter in the Administrator’s Guide
before reading this chapter to familiarize yourself with the transaction service in
Oracle Application Server.

Contents
■ Overview

■ Declarative Transactions

■ Programmatic Transactions

■ Transactions and Threads

■ Transactions for Stateful and Stateless Objects

Overview
ECO/Java objects support declarative and programmatic transactions. In declara-
tive transactions, the application server demarcates transactions for you automati-
cally. In programmatic transactions, you demarcate transactions yourself using
methods in the UserTransaction class.
a Objects 14-1

Overview
You use JDBC to access databases from ECO/Java objects. If your transactions
involve only one database and can be completed within one method call, you can
use a non JTS-aware JDBC driver and you do not have to use JTS transactions.
However, if your transactions span multiple method invocations, are performed in
collaboration with multiple objects, or span multiple databases, then you have to
use JTS and a JTS-aware JDBC driver.

To use JTS with JDBC, you need the following:

■ JDBC driver that is JTS-enabled

Oracle Application Server provides a JTS-enabled driver that connects to
Oracle7 and Oracle8 databases.

■ Transactional DADs (database access descriptors) configured through Oracle
Application Server

DADs provide information on the databases involved in the transaction. See
Chapter 10, “Enabling Transactions” in the Administrator’s Guide for informa-
tion on how to configure your DAD to be transactional.

Transaction Parameters in the Deployment Information File
When writing the JCO.APP file for applications that use JTS, you need to include
the following parameters:

transactions
Add this parameter to the [APPLICATION] section of JCO.APP. The value is
ENABLED or DISABLED. The values are not case-sensitive.

transactionalDads
Add this parameter to the [APPLICATION] section of JCO.APP. The value is a
comma -separated list of transactional DADs used by the application.

transactionMode
Add this parameter to the [<object>] section of JCO.APP. The value is one of the
transactional modes listed in Table 14–1. Each mode is used for either declarative or
programmatic transactional objects:

■ Declarative transactional modes: TX_NOT_SUPPORTED, TX_REQUIRED,
TX_SUPPORTS, TX_REQUIRES_NEW, TX_MANDATORY
14-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Overview
■ Programmatic transactional modes: TX_BEAN_MANAGED, or
TX_BEAN_MANAGED_EXT.

If this parameter is not specified, the following rules apply:

■ If the value of the transactions parameter is DISABLED, then the default
value is TX_NOT_SUPPORTED.

■ If the value of the transactions parameter is ENABLED, then the default value
is TX_BEAN_MANAGED_EXT.

Conversely, if the value of the transactionMode parameter is other than
TX_NOT_SUPPORTED, then the value of the transactions parameter is
assumed to be ENABLED.

Example 14–1 JCO.APP example

[APPLICATION]
name = Payroll
idleTimeOut = 2000
transactions = ENABLED
transactionalDads = payroll, hr

[DBProc]
className = myApp.DBProc
remoteInterface = myApp.DBInterface
transactionMode = TX_BEAN_MANAGED

JTS-Enabled JDBC Driver
The JDBC driver that you use to access databases within a transaction must be JTS-
enabled (Java Transaction Service), such as the one that is shipped with Oracle
Application Server.

In JDBC, you use the getConnection() method in a DriverManager class to
open a connection to a database. The method takes a parameter that specifies a
database URL to locate and log into a database. The format of the database URL is
driver-specific.

Note: Use TX_BEAN_MANAGED if you do not plan to manipu-
late the incoming transaction context. If you plan to access and
manipulate the incoming transaction context, use
TX_BEAN_MANAGED_EXT.
Transactions in ECO/Java Objects 14-3

Declarative Transactions
When using the JTS-enabled JDBC driver, the database URL has one of the follow-
ing formats:

jdbc:oracle:jts7:@ <dadname>
jdbc:oracle:jts8:@ <dadname>

The <dadname> specifies the name of a transactional DAD (database access
descriptor). See Chapter 10 “Enabling Transactions” in the Administrator’s Guide
for information on how to configure a DAD to be transactional.

By using DADs (instead of a connect string) in the database URL, you have to
know beforehand which databases are involved in the transaction. Note that trans-
actional DADs must have a valid username/password.

Declarative Transactions
When you use declarative transactions, you cause the ECO/Java runtime to demar-
cate transactions by setting deployment descriptor parameters on ECO/Java
objects. The ECO/Java runtime manages the transactions automatically as specified
by the parameter value set on each object. The ECO/Java runtime begins, commits,
suspends, and rolls back transactions when appropriate within the object. For exam-
ple, if you invoke a method on an object that is defined with the TX_REQUIRED
mode, the ECO/Java runtime begins the transaction when you enter the method
and commits or rolls back the transaction depending on if errors occurred when
you exit the method.

Whether you use declarative or programmatic transactions is up to you. Program-
matic transactions require manual coding, while declarative transactions automate
most of the transaction demarcations for you.

Configuring Declarative Transactions
To define declarative transactions for an ECO/Java object, you perform the follow-
ing steps:

■ Specify the database to which to connect

Note: The JTS-enabled driver is always in non-auto-commit
mode. You do not have to explicitly set the mode in your ECO/
Java object. Also, the JTS and OCI Oracle drivers are pre-registered
in ECO/Java applications. You do not have to use Class.for-
Name() for the DriverManager to locate the driver.
14-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Declarative Transactions
■ Set the transaction mode for the ECO/Java object

■ Perform database operations

Connecting to the Database
To specify the database, you call the getConnection() method in the DriverMan-
ager class. More info is presented in “JTS-Enabled JDBC Driver” on page 14-3. The
following code illustrates the use of this method.

/* Connect to the Oracle 8 database using the DAD called DADNAME */
Connection conn = DriverManager.getConnection("jdbc:oracle:jts8:@DADNAME");

/* create a JDBC statement object */
Statement stmt = conn.createStatement();

You have to make the getConnection() call for each method that requires access
to the database. This call does not slow down your system because it does not set
up the connection from scratch. Instead it gets each connection from a pool. At the
end of each method, you return the connection to the pool using the close()
method.

Setting the Transaction Mode
The transaction mode specifies when the ECO/Java runtime should begin the trans-
action. When the client executes a method within your ECO/Java object, the ECO/
Java runtime will take care of the transaction semantics based upon the mode you
set for the object. You set the mode in the transactionMode parameter at the
object level in the JCO.APP file to one of the following values:
Transactions in ECO/Java Objects 14-5

Declarative Transactions
The following table summarizes how the values for the TransactionMode direc-
tive affect the transaction context:

Table 14–1 Transaction modes

Mode Description

TX_NOT_SUPPORTED Methods in the ECO/Java object do not support declarative trans-
actions and will be executed outside of a transaction context. If a
client that is in a transaction context calls a method in a
TX_NOT_SUPPORTED object, the current transaction will be sus-
pended. The transaction is resumed when the method returns.

TX_REQUIRED If a client that is in a transaction context calls a method in the
ECO/Java object, the transaction context will be used to execute
the method. If the client is not in a transaction context, a new
transaction will be started. The transaction is committed when
the method completes.

TX_SUPPORTS If a client that is in a transaction context calls a method in the
ECO/Java object, the method is executed in the same transaction
context.

If the client is not in a transaction context, the method is executed
outside the scope of a transaction.

TX_REQUIRES_NEW If a client that is in a transaction context calls a method in the
ECO/Java object, the current transaction is suspended, and the
method is executed in a new transaction context. The new transac-
tion is committed when the method completes. The first transac-
tion is resumed when the method completes.

If the client is not in a transaction scope, the transaction coordina-
tor begins a new transaction in which to execute the method and
commits the transaction when the method completes.

TX_MANDATORY A client must invoke a method on the ECO/Java object when the
client is in a transaction context. Otherwise, the ECO/Java object
throws the TransactionRequired exception to the client.

TX_BEAN_MANAGED Methods in the TX_BEAN_MANAGED object use the
javax.jts.UserTransaction object to demarcate transactions.
Setting the transaction attribute to TX_BEAN_MANAGED indi-
cates that the ECO/Java object uses the programmatic transaction
model.

If a client invokes the ECO/Java object when the client is already
in a transaction context, the incoming transaction is suspended.
14-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Declarative Transactions
Declarative Transaction Example
In this example, a client connects to and executes methods on an ECO/Java object
named “Payroll/DBProc”. This object is declared to be declarative transactional in
its JCO.APP file by setting the transactions parameter to ENABLED, configuring
the transactional DADs, and defining the transaction mode to TX_REQUIRED.
Whenever a client executes a method within the Payroll/DBProc object, the ECO/
Java runtime will either continue within an existing transaction or, if no transaction
is currently running, will begin a new transaction. This all occurs because the object
is configured with the TX_REQUIRED mode.

JCO.APP
[APPLICATION]
name = Payroll
idleTimeOut = 2000
transactions = ENABLED
transactionalDads = payrolldad

Table 14–2 Transaction modes (summary)

Value Client in tx context? Transaction context used

TX_NOT_SUPPORTED Yes None (client’s transaction is sus-
pended)

No None

TX_REQUIRED Yes Client’s

No New transaction context

TX_SUPPORTS Yes Client’s

No None

TX_REQUIRES_NEW Yes New transaction context (client’s
transaction is suspended)

No New transaction context

TX_MANDATORY Yes Client’s

No TransactionRequired excep-
tion thrown

TX_BEAN_MANAGED Yes Client’s transaction is suspended

No None
Transactions in ECO/Java Objects 14-7

Declarative Transactions
[DBProc]
className = DBprocessing
remoteInterface = DBInterface
transactionMode = TX_REQUIRED

[DBProc.ENV]
DBNAME = payrolldad

Remote Interface for the ECO/Java Object
// the remote interface for the ECO/Java object
public interface DBInterface extends oracle.oas.jco.JCORemote {
 public void updateEmployees();
 public void updateManagers();
}

ECO/Java Object
The DBProc object contains two methods: updateEmployees() and updateMan-
agers(). The object is defined as TX_REQUIRED; so, both methods, when invoked,
will either start a new transaction or continue an existing transaction. If the transac-
tion was started within either method, the transaction is committed or rolled back
when the method completes. The developer designed the methods so that the upda-
teEmployees method is never called within a transaction; however, the updateMan-
agers() method can be called from within a transaction.

■ updateEmployees() —the method causes the ECO/Java runtime to always
begin and commit a transaction.

■ updateManagers() —the method causes the ECO/Java runtime to either
begin a new transaction or continue a transaction context. If the method is
called from a client directly, the object begins a new transaction. If called from
updateEmployees() , the method uses the transaction context that was started
in the caller method.

If you are making changes within one or more databases, you must open a JTS-
enabled JDBC driver connection to a transactional DAD. The DAD, which identi-
fies the database, should be configured within the Oracle Application Server Man-
ager and specified within the JCO.APP. The methods open a connection manually
to a JTS-enabled JDBC driver for the database connection by prepending “jdbc:ora-
cle:jts7:@” to the DAD name in the database URL in the getConnection() call.

The same example is modified slightly for programmatic transactions. See “Pro-
grammatic Transaction Example” on page 14-13.
14-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Declarative Transactions
Example 14–2 ECO/Java object for DBProc

// ECO/Java object that implements DBInterface
import javax.ejb.*;

public class DBprocessing implements javax.ejb.SessionBean {
String url = null;
UserTransaction usertran = null;
SessionContext sessctx;

void setSessionContext(SessionContext ctx) {
// save the SessionContext
sessctx = ctx;

// save the transaction context
usertran = ctx.getUserTransaction();

// get the DAD name from the deployment descriptor and use it to
// form the URL for DriverManager.getConnection()
String dadname = ctx.getEnvironment().getProperty("DBName");
url = "jdbc:oracle:jts7:@" + dadName;
...

}

public void updateEmployees() {
// A new transaction begins automatically when you enter this method

 //Each method must retrieve a database connection
Connection db = DriverManager.getConnection(url);
PrepareStatement st = db....
st.executePrepared(...);

...
if (managers_need_to_be_updated) updateManagers();

 //return the database connection to the pool when closed
db.close();

 //The transaction commits or rolls back when method completes
}

 public void updateManagers() {
// If this method is called from updateEmployees(), the transaction
// begun in that method continues in this method. Statements
// are executed within the same transaction context.

// If this method is called from the client directly, a new
Transactions in ECO/Java Objects 14-9

Declarative Transactions
// transaction is started. This transaction is committed when this
// method completes.

 //Each method must retrieve a database connection instead of being
 //able to use a connection across all methods.

Connection db = DriverManager.getConnection(url);
Statement st = db.createStatement();

 st.execute(...);
 ...
 //return the database connection to the pool when closed

db.close();
 //If the transaction was started in this method, the transaction
 //commits or rolls back when method completes; otherwise, returns
 //to transactional method that invoked this method.

}

public void jcoCreate() throws CreateException {
// creation tasks

}

public void jcoRemove() {
}

public void jcoActivate() {
// activation tasks

}

public void jcoPassivate() {
// passivation tasks

}

}

Client
public class Application {

String appServer = "oas://...";
DBInterface dbp = null;

public void doProcessing() {
// Set up JNDI
Hashtable env = new Hashtable();
env.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"oracle.oas.naming.jndi");
javax.naming.Context context = new InitialContext(env);
context = context.lookup(appServer);
14-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Programmatic Transactions
DBHome dph = (DBHome) PortableRemoteObject.narrow(
context.lookup("Payroll/DBProc"),DBHome.class);

dbp = dph.create();
 ...
dbp.updateEmployees();
...
dbp.updateManagers();
...
dbp.destroy();
dbp = null;

 }

public void static main(String args[]) {
Application ap = new Application();
ap.doProcessing();

}
}

Programmatic Transactions
Instead of demarcating transactions declaratively by setting properties on ECO/
Java objects, you can demarcate transactions programmatically using the
javax.jts.UserTransaction object. You begin, commit, and roll back transac-
tions using methods in this object. To get a reference to this object, you call the
getUserTransaction() method in the SessionContext class.

The programmatic method requires you to understand the transactional protocols:
JTS (Java Transaction Service) and JDBC (Java Database Connectivity).

■ JTS —Enables you to define transactions that span databases, method invoca-
tions, and even ECO/Java objects.

■ JDBC—JTS uses JDBC to access databases. If your transactions involve only
one database and can be completed within one method call, you can use a non
JTS-aware JDBC driver and you do not have to use JTS transactions. However,
if your transactions span multiple method invocations, are performed in collab-
oration with multiple objects, or span multiple databases, then you have to use
JTS and a JTS-aware JDBC driver.

The following code stores the transaction context in the usertran instance variable.

import javax.ejb.*;

public class myBean implements SessionBean {
Transactions in ECO/Java Objects 14-11

Programmatic Transactions
SessionContext sessctx;
UserTransaction usertran = null;
String url = null;

void setSessionContext(SessionContext ctx) {
// save the SessionContext
sessctx = ctx;

// save the transaction context
usertran = ctx.getUserTransaction();

// get the DAD name from the deployment descriptor and use it to
// form the URL for DriverManager.getConnection()
String dadname = ctx.getEnvironment().getProperty("DBName");
url = "jdbc:oracle:jts7:@" + dadName;
...

}

void myOperation() {
Connection db = DriverManager.getConnection(url);
usertran.begin();

// database operations
PrepareStatement st = db....
st.executePrepared(...);
usertran.commit();

db.close();
}

}

All operations (including queries) on a connection must be done within a transac-
tion; otherwise, the JTS-enabled driver throws an exception. Connecting, discon-
necting, and other operations that do not involve querying or modifying the
database do not need to be executed within a transaction.

The exception to this rule is DDL (data definition language) operations. You have
to perform DDL operations (such as creating tables) outside of a JTS transaction;
these operations are always auto-committed.

The UserTransaction Object
The javax.jts.UserTransaction object supports the following methods:

■ begin()
14-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Programmatic Transactions
■ commit()

■ rollback()

■ getStatus()

■ setRollbackOnly()

■ setTransactionTimeout()

Programmatic Transaction Example
The Payroll/DBProc object contains two methods: updateEmployees() and update-
Managers(). The object is defined as TX_REQUIRED; so, both methods, when
invoked, will either start a new transaction or continue an existing transaction. If
the transaction was started within either method, the transaction is committed or
rolled back when the method completes. The developer designed the methods so
that the updateEmployees method is never called within a transaction; however,
the updateManagers() method can be called from within a transaction.

■ updateEmployees() —the object begins and commits a transaction within the
method.

■ updateManagers() —the object checks if it is currently in a transaction con-
text. It begins and commits a new transaction only if it is not currently in a
transaction context. If the object is currently in a transaction, the update opera-
tion is executed in the context of the current existing transaction.

If you are making changes within one or more databases, you must open a JTS-
enabled JDBC driver connection to a transactional DAD. The DAD, which identi-
fies the database, should be configured within the Oracle Application Server Man-
ager and specified as a property during deployment. The methods open a
connection manually to a JTS-enabled JDBC driver for the database connection by
prepending “jdbc:oracle:jts7:@” to the DAD name in the database URL in the get-
Connection() call.

The same example is modified slightly for declarative transactions. See “Declara-
tive Transaction Example” on page 14-7.

JCO.APP
This object is declared to be programmatic transactional in its JCO.APP file by set-
ting the transactions parameter to ENABLED, configuring the transactional DADs,
and defining the transaction mode to TX_BEAN_MANAGED. Because the object is
configured with the TX_BEAN_MANAGED mode, each method within the object
can begin, commit, or rollback transactions.
Transactions in ECO/Java Objects 14-13

Programmatic Transactions
[APPLICATION]
name = Payroll
idleTimeOut = 2000
transactions = ENABLED
transactionalDads = payrolldad

[DBProc]
className = DBprocessing
remoteInterface = DBInterface
transactionMode = TX_BEAN_MANAGED

[DBProc.ENV]
DBNAME = payrolldad

Remote Interface for the ECO/Java Object
// Remote interface for the ECO/Java object
public interface DBInterface extends javax.ejb.EJBObject {

public void updateEmployees() throws java.rmi.RemoteException;
public void updateManagers() throws java.rmi.RemoteException;

}

ECO/Java Object
// EJB object that implements DBInterface
import javax.ejb.*;

public class DBprocessing implements javax.ejb.SessionBean {
String url = null;
UserTransaction usertran = null;
SessionContext sessctx;

void setSessionContext(SessionContext ctx) {
// save the SessionContext
sessctx = ctx;

// save the transaction context
usertran = ctx.getUserTransaction();

// get the DAD name from the deployment descriptor and use it to
// form the URL for DriverManager.getConnection()
String dadname = ctx.getEnvironment().getProperty("DBName");
url = " jdbc:oracle:jts7:@" + dadName;
...

}

14-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Programmatic Transactions
public void updateEmployees() {
// get a JDBC database connection from a pool
Connection db = DriverManager.getConnection(url);
usertran.begin(); // start new transaction
PrepareStatement st = db....
st.executePrepared(...);
...
if (managers_need_to_be_updated) updateManagers();

usertran.commit(); // commit transaction
db.close(); // return connection to the pool

 }

public void updateManagers() {
// get a connection from a pool
Connection db = DriverManager.getConnection(url);

// Verify if transaction is active
boolean newTransaction =

(usertran.getStatus() == usertran.STATUS_NO_TRANSACTION);
// Start transaction if needed
if (newTransaction) usertran.begin();
Statement st = db.createStatement();
st.execute(...);
...
// Commit transaction if started
if (newTransaction) usertran.commit(...);
// return connection to the pool
db.close();

}
}

Client
public class Application {

String appServer = "oas://...";
DBInterface dbp = null;

public void doProcessing() {
// Set up JNDI
Hashtable env = new Hashtable();
env.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"oracle.oas.naming.jndi");
javax.naming.Context context = new InitialContext(env);
context = context.lookup(appServer);
Transactions in ECO/Java Objects 14-15

Transactions and Threads
DBHome dph = (DBHome) PortableRemoteObject.narrow(
initialContext.lookup("Payroll/DBProc"),DBHome.class);

dbp = dph.create();

dbp.updateEmployees();
...
dbp.updateManagers();
...
dbp.destroy();
dbp = null;

}

public void static main(String args[]) {
Application ap = new Application();
ap.doProcessing();

}
}

Transactions and Threads
Transactions are associated with threads. In one thread, you can have only one
active transaction at any time. This means that you cannot begin another transac-
tion until the current transaction is completed. Normally, you would suspend the
current transaction to start a second transaction before committing the first. How-
ever, at this time, ECO/Java does not support suspending and resuming transac-
tions.

The association between transactions and threads is very tight. A transaction can
only be committed or rolled back on the same thread that started it, and all opera-
tions within the transaction must be invoked from the same thread. You cannot cre-
ate additional threads within a transaction. You can have your object within the
thread call other objects within the scope of the transaction as long as the original
thread commits the transaction.

If the invoked object is defined to accept the current transaction context, the transac-
tion continues uninterrupted. If your object was declared as TX_REQUIRES_NEW,
the normal response would be for the ECO/Java runtime to start a subtransaction
within the current transaction. However, ECO/Java does not currently support sub-
transactions. Any call from an object with an existing transaction to an object with
TX_REQUIRES_NEW causes the transaction to be rolled back (see Figure 14–1). No
exceptions are currently logged to flag for this situation; you must verify that none
of your method invocations cause this type of scenario.
14-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Transactions for Stateful and Stateless Objects
Figure 14–1 Transactional Error Condition

Transactions in the ECO/Java model in Oracle Application Server can be initiated
only by ECO/Java objects. They cannot be initiated by clients outside the applica-
tion server.

Transactions for Stateful and Stateless Objects
There may be a situation where your client needs to make several calls to the object
within the same transaction. You can do this with a stateful object that has been con-
figured with the TX_BEAN_MANAGED mode. Because stateful objects are used by
a single client only, you can design the object such that its transactions span multi-
ple client calls. For stateless objects, each transaction has to be completed when the
method completes. Stateless objects cannot have transactions that span multiple cli-
ent calls.

When a stateful object is TX_BEAN_MANAGED, you can begin the transaction in
one method within the object and commit the transaction within another method in
the object. Both methods must be within the same object. The client can invoke the
method with the begin to start the transaction. Then, the client invokes other meth-
ods within the object, which will all be a part of the transaction. Finally, the client
invokes the method with the commit to finish the transaction. This enables the cli-
ent to make several method calls within the stateful object for a single transaction.

Example 14–3 Stateful and TX_BEAN_MANAGED object

The following example defines a stateful object that is defined as
TX_BEAN_MANAGED transactional. The object is designed so that the client can
start the transaction by invoking beginTransaction() , invoke other methods
within the transaction, such as updateEmployees() , and finally, commit the trans-
action by invoking commitTransaction().

JCO.APP
[APPLICATION]
name = Payroll
idleTimeOut = 2000
transactions = ENABLED

object 2-
TX_REQUIRES_

NEW

object 1-
TX_REQUIRED
Transactions in ECO/Java Objects 14-17

Transactions for Stateful and Stateless Objects
transactionalDads = payrolldad

[DBProc]
className = DBprocessing
remoteInterface = DBInterface
transactionMode = TX_BEAN_MANAGED
Stateless = FALSE

[DBProc.ENV]
DBNAME = payrolldad

Remote Interface for the ECO/Java Object
// Remote interface for the ECO/Java object
public interface DBInterface extends javax.ejb.EJBObject {

public void updateEmployees() throws java.rmi.RemoteException;
public void updateManagers() throws java.rmi.RemoteException;

}

ECO/Java Object
// ECO/Java object that implements DBInterface
import javax.ejb.*;

public class DBprocessing implements javax.ejb.SessionBean {
String url = null;
UserTransaction usertran = null;
SessionContext sessctx;

void setSessionContext(SessionContext ctx) {
// save the SessionContext
sessctx = ctx;

// save the transaction context
usertran = ctx.getUserTransaction();

// get the DAD name from the deployment descriptor and use it to
// form the URL for DriverManager.getConnection()
String dadname = ctx.getEnvironment().getProperty("DBName");
url = "jdbc:oracle:jts7:@" + dadName;
...

}

public void beginTransaction() {
usertran.begin(); // start new transaction

}

14-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Transactions for Stateful and Stateless Objects
public void updateEmployees() {
// get a JDBC database connection from a pool
Connection db = DriverManager.getConnection(url);
PrepareStatement st = db....
st.executePrepared(...);
...
db.close(); // return connection to the pool

 }

public void commitTransaction() {
usertran.commit(); // commit transaction

}

Client
public class Application {

String appServer = "oas://...";
DBInterface dbp = null;

public void doProcessing() {
// Set up JNDI
Hashtable env = new Hashtable();
env.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

"oracle.oas.naming.jndi");
javax.naming.Context context = new InitialContext(env);
context = context.lookup(appServer);

DBHome dph = (DBHome) PortableRemoteObject.narrow(
initialContext.lookup("Payroll/DBProc"),DBHome.class);

dbp = dph.create();

dbp.beginTransaction();
dbp.updateEmployees();

...
dbp.commitTransaction();
dbp.destroy();
dbp = null;

}

public void static main(String args[]) {
Application ap = new Application();
ap.doProcessing();

}
}

Transactions in ECO/Java Objects 14-19

Transactions for Stateful and Stateless Objects
14-20 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating JCORBA Applications to
15

Migrating JCORBA Applications to ECO/

Java

Although the application server supports JCORBA applications, you might choose
to migrate existing JCORBA applications to ECO/Java or EJB applications. This
chapter contains instructions for migrating to ECO/Java. Chapter 7, “Migrating to
OAS 4.0.8 EJB Applications” provides instructions for migrating to EJB.

Contents
You can migrate JCORBA applications and their clients to ECO/Java by following
instructions listed in this chapter:

■ Migrating JCORBA Server Objects

■ Converting JCO.APP to ECO.APP

■ Migrating Clients

Migrating JCORBA Server Objects
Migrating OAS 4.0.7 JCORBA applications to ECO/Java requires source code
changes. The component model of Oracle Application Server now provides home
and remote interfaces, as well as complete JNDI support.

Migration for OAS 4.0.7 JCORBA applications includes the following:

■ Remote Interfaces

■ Home Interfaces

■ Implementation Class

■ LifeCycle Interfaces
ECO/Java 15-1

Migrating JCORBA Server Objects
■ ObjectManager

■ JCO.APP

■ Example

Remote Interfaces
Each ECO/Java remote interface must extend from oracle.oas.eco.ECOOb-
ject , which replaces oracle.oas.jco.JCORemote in JCORBA remote inter-
faces.

Home Interfaces
Each ECO/Java object must have a home interface. This interface must extend from
oracle.oas.eco.ECOHome . See “Creating the Home Interface” on page 11-5 for
information on how to create home interfaces.

Implementation Class
■ Each ECO/Java object’s implementation class must implement the ora-

cle.oas.eco.SessionBean interface and its methods. Additionally, the
implementation needs to obtain the reference to the SessionContext object and
save it as part of the state of the component. For example:

public void setSessionContext(SessionContext ctx) {
this.osc = ctx;

}

See “Creating the SessionBean Class” on page 11-6.

■ Move any initialization operations to the ecoCreate() method.

LifeCycle Interfaces
Any LifeCycle interface implementations must be removed from the JCORBA appli-
cation.
15-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating JCORBA Server Objects
ObjectManager
Change any ObjectManager type with SessionContext type. Table 15–1 maps the
methods in the ObjectManager class to methods in the SessionContext class.

JCO.APP
■ Rename the JCO.APP file to ECO.APP

■ Add a new name-value pair, homeInterface =
<home_interface_name> .

■ Remove any of the following entries: minThreads, maxThreads, and max-
Clients. These entries are no longer required and are ignored if present in
ECO.APP.

■ Optional entries can be included in ECO.APP. For a tabulated list of these
entries, refer to “Structure of the Deployment Information File” on page
12-2.

Example
The following table shows code that changed when migrating a JCORBA object to
an ECO/Java object.

Table 15–1 Methods in SessionContext and ObjectManager classes

ObjectManager SessionContext

getEnvironment() getEnvironment()

getObjectManager() Parameter passed to
setSessionContext()

getSelf() getECOObject()

revokeSelf() getECOObject().remove()

getLogger() Obtain from JNDI as
"oas_service:logger"

getCurrentTransaction() getUserTransaction()
Migrating JCORBA Applications to ECO/Java 15-3

Migrating JCORBA Server Objects
Table 15–2 Converting a JCORBA object to an ECO/Java object.

JCORBA ECO/Java

package myStack;
import oracle.oas.jco.* ;
import java.util.Properties;

public class ServerStack implements
Lifecycle

{
 private int stackSize = 0;
 private String stackElements[];
 private int top = -1;
 private ObjectManager mgr = null;

private Logger logger = null;

package myStack;
import oracle.oas.eco.*;
import java.util.Properties;
import javax. naming.InitialContext ;

public class ServerStack implements
SessionBean

{
 private int stackSize = 0;
 private String stackElements[];
 private int top = -1;
 private SessionContext osc = null;
 private Logger logger = null;
15-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating JCORBA Server Objects
public void jcoCreate () {

 mgr = ObjectManager.
getObjectManager(this);

Properties env =
mgr.getEnvironment();

logger = mgr.getLogger();
logger.setSeverity(Logger.

LOG_SEVERITY_DEBUG);

try {
setStackSize(Integer.parseInt(

env.getProperty(
"initialStackSize")));

}
catch (Exception e) {}

}

public void setSessionContext (
SessionContext ctx) {

 this.osc = ctx;
 }
}

public void ecoCreate()
 throws CreateException
 {
 Properties env =
 osc.getEnvironment();

// logger is now a service
 try {
 logger = (Logger)(
 new InitialContext()).lookup(
 "oas_service:logger");
 logger.setSeverity(
 Logger.LOG_SEVERITY_DEBUG);
 }
 catch(javax.naming.
 NamingException ne) {
 System.err.println(
 "Could not get logger");
 }
 try {
 setStackSize(Integer.parseInt(
 env.getProperty(
 "initialStackSize")));
 }
 catch (Exception e) {
 throw new
 CreateException("Cannot
 parse initialStackSize");
 }
 }

Table 15–2 Converting a JCORBA object to an ECO/Java object.

JCORBA ECO/Java
Migrating JCORBA Applications to ECO/Java 15-5

Migrating JCORBA Server Objects
public void ecoRemove() {
}

public void ecoPassivate () {
logger = null;

}

public void ecoActivate () {
 logger = (Logger)
 (new initialContext()).
 lookup("oas_service:logger");

}

public int getStackSize()
 {

logger.println(" Getting
stack size...");

 return stackSize;
 }

public int getStackSize()
 {

logger.println(" Getting
stack size...");

 return stackSize;
 }

 public void setStackSize(int size)
throws StackException

{
if (size < 0)

throw new StackException();
logger.println(" Setting stack

size to " + size + "...");
top = -1;
stackSize = size;
stackElements = new String[size];

}

 public void setStackSize(int size)
throws StackException

{
if (size < 0)

throw new StackException();
logger.println(" Setting stack

size to " + size + "...");
top = -1;
stackSize = size;
stackElements = new String[size];

}

public void push(String value)
throws StackException

{
if (top == stackSize - 1)

throw new StackException();
logger.println(" Pushing \"" +

value + "\" onto the stack...");
stackElements[++top] = value;

}

public void push(String value)
throws StackException

{
if (top == stackSize - 1)

throw new StackException();
logger.println(" Pushing \"" +

value + "\" onto the stack...");
stackElements[++top] = value;

}

Table 15–2 Converting a JCORBA object to an ECO/Java object.

JCORBA ECO/Java
15-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Converting JCO.APP to ECO.APP
Converting JCO.APP to ECO.APP
You write deployment information for JCORBA applications in the JCO.APP file,
but for ECO/Java applications, the file needs to be renamed to ECO.APP. In addi-
tion, you need to modify the file to include the homeInterface parameter, as shown
below:

[APPLICATION]
name = myStack
idleTimeOut = 2000

[ServerStack]
className = myStack.ServerStack
remoteInterface = myStack.ServerStackRemote
#add this statement
homeInterface = myStack.ServerStackHome

[ServerStack.ENV]
; property used by the ServerStack object
initialStackSize = 10

In addition, the following JCO.APP parameters are no longer supported in ECO/
Java. These parameters will need to be removed from your newly created ECO.APP.

public String pop() throws
StackException

{
if (top == -1)

throw new StackException();
logger.println(" Popping the

stack (returning element " +
stackElements[top] + ")...");

return stackElements[top--];
}

}

public String pop() throws
StackException

{
if (top == -1)

throw new StackException();
logger.println(" Popping the

stack (returning element " +
stackElements[top] + ")...");

return stackElements[top--];
}

}

Table 15–2 Converting a JCORBA object to an ECO/Java object.

JCORBA ECO/Java
Migrating JCORBA Applications to ECO/Java 15-7

Converting JCO.APP to ECO.APP
Application Section

Object Section

Table 15–3 Application properties

Property Description

minThreads The minimum number of threads that can access JCORBA objects in
a JCORBA server process. The number of threads determines the
number of requests that an object can handle at the same time.

Default: 1

maxThreads The maximum number of threads that can access JCORBA objects in
a JCORBA server process. If there are more object instances than
threads, then requests will have to wait until a thread is available.

Default: 10

Table 15–4 Object properties

Property Description

minInstances The number of object instances that the application server starts up
in a JCORBA server process when the process starts up.

This property can be specified at the object level or at the application
level. If specified in both places, the value specified at the object
level takes precedence.

The default is 0.

maxInstances The maximum number of object instances that a JCORBA server pro-
cess can hold. The number of instances increases as the process
receives requests.

This property can be specified at the object level or at the application
level. If specified in both places, the value specified at the object
level takes precedence.

The default is 10.
15-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Migrating Clients
Migrating Clients
To migrate JCORBA clients, do the following:

■ If you are using ObjectFactory to get object references, replace ObjectFactory
with JNDI.

Use JNDI to locate the home interfaces of objects. The object returned by JNDI
is the reference to the home interface, which can be narrowed to the appropri-
ate home interface type by using PortableRemoteObject.narrow() .

See Chapter 13, “Developing Clients for ECO/Java Applications” for JNDI
access semantics.

■ Add the following import statement to the client:

import javax.naming.*;
import java.util.Hashtable;

■ Remove any LifeCycle interface.

minThreads The minimum number of threads in a JCORBA server process. Each
object instance uses exactly one thread.

This property can be specified at the object level or at the application
level. If specified in both places, the value specified at the object
level takes precedence.

The default is 1.

maxThreads The maximum number of threads in a JCORBA server process. If
there are more object instances than threads, then requests will have
to wait until a thread is available.

This property can be specified at the object level or at the application
level. If specified in both places, the value specified at the object
level takes precedence.

The default is 10.

poolSize The number of objects of this type that the pool can hold. The pool
size should be smaller than or equal to the maximum number of
instances.

Default: 0

Table 15–4 Object properties

Property Description
Migrating JCORBA Applications to ECO/Java 15-9

Migrating Clients
■ Catch the java.rmi.RemoteException exceptions that are now thrown by
your remote objects.
15-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

16

Reference

This chapter contains reference pages for the classes.

■ ECOBean Interface

■ ECOContext Interface

■ getCallerIdentity

■ getEnvironment

■ getHome

■ getRollbackOnly

■ getUserTransaction

■ isCallerInRole

■ setRollbackOnly

■ ECOMetaData Interface

■ getHomeInterfaceClass

■ getECOHome

■ getPrimaryKeyClass

■ getRemoteInterfaceClass

■ isSession

■ Handle Interface

■ getECOObject
Reference 16-1

■ SessionBean Interface

■ setSessionContext

■ ecoRemove

■ ecoPassivate

■ ecoActivate

■ SessionContext Interface

■ getECOObject

■ UserTransaction Interface

■ commit

■ begin

■ rollback

■ setRollbackOnly

■ getStatus

■ setTransactionTimeout

■ Logger Class

■ setSeverity

■ getSeverity

■ PortableRemoteObject Class

■ narrow

■ exportObject

■ unexportObject

■ HeuristicMixedException Exception

■ HeuristicMixedException()

■ HeuristicMixedException(String)

■ HeuristicRollbackException Exception

■ HeuristicRollbackException()

■ HeuristicRollbackException(String)
16-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

■ TransactionRolledbackException Exception

■ TransactionRolledbackException()

■ TransactionRolledbackException(String)
Reference 16-3

ECOBean Interface
ECOBean Interface

public interface ECOBean extends Serializable

This is the common super-interface extended by the SessionBean object. It’s func-
tionality in ECO/Java is identical to the functionality of javax.ejb.EnterpriseBean
interface in EJB.

Figure 16–1 Inheritance for the ECOBean interface

Syntax
public interface ECOBean extends Serializable

There are no methods for ECOBean.

java.lang.Object

oracle.oas.eco.ECOBean
16-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ECOContext Interface
ECOContext Interface

public interface ECOContext

ECOContext provides methods for an ECO/Java object instance to access the runt-
ime context of the instance. It’s functionality in ECO/Java is identical to the func-
tionality of javax.ejb.EJBContext interface in EJB.

Figure 16–2 Inheritance for the ECOContext interface

getCallerIdentity

Syntax
public abstract Identity getCallerIdentity()

Description
Obtain the java.security.Identity of the caller.

Return Value
The Identity object that identifies the caller.

getEnvironment

Syntax
public abstract Properties getEnvironment()

java.lang.Object

oracle.oas.eco.ECOContext
Reference 16-5

getHome
Description
Retrieve the environment properties of an ECO/Java object.

Return Value
The environment properties for the ECO/Java object. If a ECO/Java object does not
have environment properties, an empty java.util.Properties is returned. Null is
never returned.

getHome

Syntax
public abstract ECOHome getHome()

Description
Obtain the ECO/Java object’s home interface.

Return Value
The home interface object of the ECO/Java object.

getRollbackOnly

Syntax
public abstract boolean getRollbackOnly()

Description
Determine if transaction has been marked only for rollback.

Return Value
True if current transaction is marked for rollback; false otherwise.
16-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ECOContext Interface
getUserTransaction

Syntax
public abstract UserTransaction getUserTransaction()

Description
Obtain the transaction demarcation interface.

Return Value
The UserTransaction interface that the ECO/Java object instance can use for transac-
tion demarcation.

isCallerInRole

Syntax
public abstract boolean isCallerInRole(Identity role)

Description
Determine if the caller has the specified role.

Parameters
role - java.security.Identity of the role to be tested.

Return Value
True, if the caller has the specified role.

setRollbackOnly

Syntax
public abstract void setRollbackOnly()
Reference 16-7

setRollbackOnly
Description
Mark the current transaction permanently for rollback. This transaction can never
commit.
16-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ECOMetaData Interface
ECOMetaData Interface

public interface ECOMetaData

ECOMetaData provides methods that return metadata required by development
tools to discover ECO/Java objects constituting an application. The metadata can
also be used by clients using a scripting language to access ECO/Java objects.

ECOMetaData’s functionality in ECO/Java is identical to the functionality of
javax.ejb.EJBMetaData in EJB.

Figure 16–3 Inheritance for the ECOMetaData interface

getHomeInterfaceClass

Syntax
public abstract Class getHomeInterfaceClass()

Description
Retrieve the Class object for the ECO/Java object’s home interface.

getECOHome

Syntax
public abstract ECOHome getECOHome()

Description
Obtain the home interface of the ECO/Java object.

java.lang.Object

oracle.oas.eco.ECOMetaData
Reference 16-9

getPrimaryKeyClass
getPrimaryKeyClass

Syntax
public abstract Class getPrimaryKeyClass()

Description
Obtain the Class object for the ECO/Java object's primary key class.

getRemoteInterfaceClass

Syntax
public abstract Class getRemoteInterfaceClass()

Description
Obtain the Class object for the ECO/Java object's remote interface.

isSession

Syntax
public abstract boolean isSession()

Description
Test if the ECO/Java object's type is "session".

Return Value
True if the ECO/Java object’s type is session; false otherwise.
16-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Handle Interface
Handle Interface

public interface Handle

A handle is an abstraction of a network reference to an ECO/Java object. It is used
as a persistent reference to an ECO/Java object and is implemented by all ECO/
Java object handles.

Figure 16–4 Inheritance for the Handle interface

getECOObject

Syntax
public abstract ECOObject getECOObject()

Description
Obtain the handle to a serialized ECO/Java object. The handle can be used to get
the object reference to the ECO/Java object from another process.

java.lang.Object

oracle.oas.eco.Handle
Reference 16-11

SessionBean Interface
SessionBean Interface

public interface SessionBean extends ECOBean

This interface provides a method that allows the application server runtime to set
the context of ECO/Java sessions. It also has methods to serialize and unserialize
objects with their contexts. ECO/Java implementation classes must implement this
interface and its methods. The SessionBean interface functionality in ECO/Java is
identical to the functionality of javax.ejb.SessionBean in EJB.

Figure 16–5 Inheritance for the SessionBean interface

setSessionContext

Syntax
public abstract void setSessionContext(SessionContext ctx)

Description
Set the session context for the ECO/Java object instance. This method is called after
creation of the instance.

Return Value
n/a

java.lang.Object

oracle.oas.eco.SessionBean
16-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

SessionBean Interface
ecoRemove

Syntax
public abstract void ecoRemove() throws RemoveException

Description
This method is called before a session object ends. The object can end when the cli-
ent invokes the remove operation or when the object times out.

Return Value
n/a

ecoPassivate

Syntax
public abstract void ecoPassivate()

Description
This method is called before the object enters the “passive” state. It should release
any resources that can be re-acquired with the ecoActivate() method.

Return Value
n/a

ecoActivate

Syntax
public abstract void ecoActivate()
Reference 16-13

ecoActivate
Description
This method is called when the object is reactivated from the “passive” state. It
should re-acquire any resources that was released by the ecoPassivate() method.

Return Value
n/a
16-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

SessionContext Interface
SessionContext Interface

public interface SessionContext extends ECOContext

This interface provides access to the runtime session context of a session object. Its
functionality mimics javax.ejb.SessionContext in EJB.

Figure 16–6 Inheritance for the SessionContext interface

getECOObject

Syntax
public abstract ECOObject getECOObject()

Description
Gets a reference to the object that is associated with the session instance.

Return Value
The object associated with the session instance.

java.lang.Object

oracle.oas.eco.SessionContext
Reference 16-15

UserTransaction Interface
UserTransaction Interface

public interface UserTransaction

This interface is used for transaction demarcation when the transaction attribute of
a ECO/Java object is set to TX_BEAN_MANAGED. It is identical to javax.jts.User-
Transaction in EJB.

Figure 16–7 Inheritance for the UserTransaction interface

Table 16–1 UserTransaction Constants

Constant Syntax Description

STATUS_ACTIVE public static final int
STATUS_ACTIVE

The transaction is in
the active state.

STATUS_COMMITTED public static final int
STATUS_COMMITTED

The transaction has
been committed.

STATUS_COMMITTING public static final int
STATUS_COMMITTING

The transaction is
being committed.

STATUS_MARKED_ROLLBACK public static final int
STATUS_MARKED_ROLLBACK

The transaction has
been marked for
rollback.

STATUS_NO_TRANSACTION public static final int
STATUS_NO_TRANSACTION

The transaction is
not associated with
a target object.

STATUS_PREPARED public static final int
STATUS_PREPARED

The transaction is
prepared.

STATUS_PREPARING public static final int
STATUS_PREPARING

The transaction is
being prepared.

STATUS_ROLLEDBACK public static final int
STATUS_ROLLEDBACK

The transaction has
been rolled back.

java.lang.Object

oracle.oas.eco.UserTransaction
16-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

UserTransaction Interface
begin

Syntax
public abstract void begin()

Description
Creates a new transaction. The new transaction will be associated with the current
thread.

Return Value
n/a

commit

Syntax
public abstract void commit() throws TransactionRolledbackException,

HeuristicMixedException, HeuristicRollbackException

Description
Commits the current thread’s transaction. After committing, the thread loses its
association with the transaction.

STATUS_ROLLING_BACK public static final int
STATUS_ROLLING_BACK

The transaction is
rolling back.

STATUS_UNKNOWN public static final int
STATUS_UNKNOWN

The transaction’s
status is unknown
at this time.

Table 16–1 UserTransaction Constants

Constant Syntax Description
Reference 16-17

getStatus
Return Value
n/a

getStatus

Syntax
public abstract int getStatus()

Description
Gets the status of the current thread’s transaction.

Return Value
One of the UserTransaction Constants describing the status.

rollback

Syntax
public abstract void rollback()

Description
Rolls back the current thread’s transaction.

Return Value
n/a

setRollbackOnly

Syntax
public abstract void setRollbackOnly()
16-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

UserTransaction Interface
Description
Change the current thread’s transaction so that the transacation’s only possible
operation is to roll back its changes.

Return Value
n/a

setTransactionTimeout

Syntax
public abstract void setTransactionTimeout(int seconds)

Description
Define the timeout value of the current thread’s transaction.

Parameters
seconds - the timeout value in seconds. If the value is 0 then the default timeout
value is used.

Return Value
n/a
Reference 16-19

Logger Class
Logger Class

public abstract class Logger extends PrintWriter

The oracle.oas.eco.Logger class enables you to write messages to the Oracle Appli-
cation Server logging facility. The methods in the class allow you to set the severity
level of the message. The methods that perform the actual writes are from the Print-
Writer class.

Figure 16–8 Inheritance for the Logger class

Table 16–2 Logger Class Constants

Constant Syntax Description

LOG_SERVICE public static final String
LOG_SERVICE

JNDI URL for access-
ing LOGGER.

LOG_SEVERITY_FATAL public static final int
LOG_SEVERITY_FATAL

Severity of fatal error
messages for log file
(0).

LOG_SEVERITY_ERROR public static final int
LOG_SEVERITY_ERROR

Severity of non-fatal
error messages for
log file (1).

LOG_SEVERITY_WARNING public static final int
LOG_SEVERITY_WARNING

Severity of warning
messages for log file
(4).

java.lang.Object

java.io.Writer

java.io.PrintWriter

oracle.oas.eco.Logger
16-20 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Logger Class
setSeverity

Class
oracle.oas.eco.Logger

Syntax
public void setSeverity(int level)

Description
Set the logging severity level. If not set, the default is LOG_SEVERITY_DEBUG.

Parameters
level - The severity level (0 to 15). You may use the following constants to specify
the severity of the message. The lower the value, the more severe the message is.

LOG_SEVERITY_DEBUG public static final int
LOG_SEVERITY_DEBUG

Severity of debug
messages for log file
(11).

LOG_SEVERITY_FULL_TRACE public static final int
LOG_SEVERITY_FULL_TRACE

Severity of trace mes-
sages for log file (15).

Table 16–3 Logger variables

Symbol Description Value

LOG_SEVERITY_FATAL Fatal error messages 0

LOG_SEVERITY_ERROR Non-fatal error messages 1

LOG_SEVERITY_WARNING Warning messages 4

LOG_SEVERITY_DEBUG Debug messages. This is the default
severity level.

11

LOG_SEVERITY_FULL_TRACE Trace messages 15

Table 16–2 Logger Class Constants

Constant Syntax Description
Reference 16-21

getSeverity
getSeverity

Class
oracle.oas.eco.Logger

Syntax
public abstract int getSeverity()

Description
The current severity level for logging.

Return Value
The current severity level.
16-22 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

PortableRemoteObject Class
PortableRemoteObject Class

public class PortableRemoteObject extends Object

The oracle.oas.eco.PortableRemoteObject class allows you to narrow
interfaces without using the helper classes directly.

Figure 16–9 Inheritance for the PortableRemoteObject class

narrow

Class
oracle.oas.eco.PortableRemoteObject

Syntax
public static Object narrow(Object obj, Class class)

Description
Narrows an interface from its object reference.

exportObject

Class
oracle.oas.eco.PortableRemoteObject

java.lang.Object

oracle.oas.eco.PortableRemoteObject
Reference 16-23

unexportObject
Syntax
public static void exportObject(Object obj)

Description
Activates a CORBA instance that can be run on a client machine.

Return Value
n/a

unexportObject

Class
oracle.oas.eco.PortableRemoteObject

Syntax
public static void unexportObject(Object obj)

Description
Deactivates a CORBA instance that can be run on a client machine.

Return Value
n/a
16-24 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

HeuristicMixedException Exception
HeuristicMixedException Exception

public class HeuristicMixedException extends Exception

This exception is thrown when a heuristic decision has been made and that some
updates have been committed and the rest rolled back.

Figure 16–10 Inheritance for the HeuristicMixedException class

HeuristicMixedException()

Syntax
public HeuristicMixedException()

HeuristicMixedException(String)

Syntax
public HeuristicMixedException(String reason)

Parameters
reason - why the exception occurred.

java.lang.Object

java.lang.Throwable

java.lang.Exception

oracle.oas.eco.HeuristicMixedException
Reference 16-25

HeuristicRollbackException Exception
HeuristicRollbackException Exception

public class HeuristicRollbackException extends Exception

This exception is thrown when a heuristic decision has been made and that all
updates have been rolled back.

Figure 16–11 Inheritance for the HeuristicRollbackException class

HeuristicRollbackException()

Syntax
public HeuristicRollbackException()

HeuristicRollbackException(String)

Syntax
public HeuristicRollbackException(String reason)

Parameters
reason - why the exception occurred.

java.lang.Object

java.lang.Throwable

java.lang.Exception

oracle.oas.eco.HeuristicRollbackException
16-26 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

TransactionRolledbackException Exception
TransactionRolledbackException Exception

public class TransactionRolledbackException extends Exception

When this exception is raised, the transaction being processed has been either
rolled back or marked to be rolled back. The requested operation will not be per-
formed.

Figure 16–12 Inheritance for the TransactionRolledbackException class

TransactionRolledbackException()

Syntax
public TransactionRolledbackException()

TransactionRolledbackException(String)

Syntax
public TransactionRolledbackException(String reason)

Parameters
reason - why the exception occurred.

java.lang.Object

java.lang.Throwable

java.lang.Exception

oracle.oas.eco.TransactionRolledbackException
Reference 16-27

TransactionRolledbackException(String)
16-28 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Part III

 Oracle Application Server ORB for Java

Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Accessing CORBA Objects fro
17

 Accessing CORBA Objects from Java

CORBA is a industry specification for distributed objects. Oracle Application
Server allows you to create CORBA standardized objects through the application
server’s ORB. However, if you wish Oracle Application Server to simplify the
CORBA interface, you should use JCO. JCO invokes the CORBA APIs under the
covers. This chapter discusses the application server’s ORB, which defines how to
access and create CORBA objects directly.

The ORB features consists of an IDL-to-Java compiler (oasoidlc) and libraries
that provide a CORBA runtime environment. CORBA, IDL, and the IDL/Java Lan-
guage Mapping specification are defined by the Object Management Group
(OMG). The IDL and IDL/Java Language Mapping are discussed in Chapter 18,
IDL Syntax and Semantics and Chapter 19, IDL-to-Java Language Mapping. For
more detailed mapping information and the complete CORBA IDL specification,
visit the OMG website at http://www.omg.org.

Contents
■ Version Requirements for Using Oracle Application Server ORB

■ Creating a CORBA Object within the ORB

■ Steps in the Development Process

■ Writing a Simple Server and Client

■ Using the IDL-to-Java Compiler

■ Running the Server and Client Applications

■ Executing Legacy Code through the Tie Mechanism
m Java 17-1

Version Requirements for Using Oracle Application Server ORB
Version Requirements for Using Oracle Application Server ORB
To use the ORB, you must have at least the following patches and operating sys-
tems:

Creating a CORBA Object within the ORB
In addition to conforming to the standard IDL/Java Language Mapping, the ORB
provides the following extensions:

■ the connect method to register objects with the ORB as stateful or stateless

■ the bind method for clients to connect to the ORB

■ support for the tie mechanism, which enables you to forward operations to leg-
acy applications

■ the OBJECT_STATELESS and OBJECT_TRANSIENT flags for identifying the
state of the object

When you use these extensions, you must typecast the returned objects to an
expected object type. This makes it easier for you to identify which calls are stan-
dard calls and which are specific to Oracle.

These extensions may not work in CORBA environments that use ORBs from differ-
ent vendors. For example, if your clients are applets running on Netscape Commu-
nicator 4 that uses an ORB from Visigenic and the ORB on the server side is from
Oracle, interoperability problems could occur. In this situation, the Oracle Applica-
tion Server ORB should publish a stateful object reference for the client to retrieve
it. Then, the client should invoke methods on this object reference. This avoids
using the Oracle extension for the bind method.

Table 17–1 Version requirements for running the ORB

Sun Solaris Microsoft Windows NT

Operating system version 2.5.1 or later with the latest patches Windows NT 4.0

SunSoft Java JDK 1.1.6 1.1.6

Note: The bind() and connect() extensions are optional. You
would only use the bind() when you want the ORB to find the
stateless object and forward your request to that object. If you have
an object reference for an existing stateful object, you can invoke
the methods on that object and bypass the ORB’s involvement.
17-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Writing a Simple Server and Client
Steps in the Development Process
To develop clients and objects in a CORBA environment:

1. Define the object’s interface, which describes the methods or operations clients
can invoke on the object, through IDL. IDL is described in the CORBA specifica-
tion.

2. Compile the IDL file through an IDL-to-Java compiler to generate Java bind-
ings for the IDL file. The compiler that comes with the ORB is oasoidlc .

3. Implement the methods (which you specified in IDL) for your object using Java
files generated by oasoidlc .

4. Create a server to instantiate your object.

5. Create a client to invoke the methods.

A “simple” demo is included in your ORB package to illustrate these steps. The
demo can be found in the $ORB_HOME/demo directory.

The following sections describe these steps in more detail.

■ Writing a Simple Server and Client

– Define the Object’s Interface through IDL

– Implementing the Interface Methods

– Writing the Server Application

– Writing a Client Application

■ Running the Server and Client Applications

Writing a Simple Server and Client
CORBA specifies that the following Interface Definition Language (IDL) generated
files exist to facilitate communications between the client and the ORB and between
the ORB and the server. The IDL-generated client stub facilitates communication on
the client side; the IDL-generated skeleton facilitates communication on the server
side. Both of these files are generated automatically from the original IDL file
through an IDL compiler.

Note: CORBA IDL interfaces can be compiled into several
languages. At this time, OAS only supports the Java language.
Accessing CORBA Objects from Java 17-3

Writing a Simple Server and Client
Figure 17–1 Route of a client request

In a simple client and server environment, an object method is invoked as shown in
Figure 17–1 and described below.

1. The client application retrieves an object reference for the desired server object.
When the client invokes a method on the object, the IDL-generated stub for the
method is invoked.

2. The stub object manages the communication between the client and the ORB.
Specifically, it marshals the parameters for the method invocation. The ORB
sends the request to the remote server, where the skeleton is located.

3. The skeleton manages the communication between the ORB and the server.
Specifically, the skeleton prepares the parameters to pass to the desired
method, calls the method, and returns any output values or parameters.

This section describes the process of writing a server interface, named simple. The
simple example shows the following:

■ creates the IDL for the simple interface

■ generates the stub and skeleton from this interface’s IDL file

■ implements operations to echo a string sent from a client and to quit

IDL
stubs

IDL
skeletons

ORB

Client
Application

Server
Application
17-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Writing a Simple Server and Client
■ adds the appropriate client code and server implementation code.

Define the Object’s Interface through IDL
When writing a server application, you must create an Interface Definition Lan-
guage (IDL) file to define the server’s interfaces. An interface is a template that
defines a CORBA Object. As with any object in an object oriented language, it con-
tains methods and data elements that can be read or set. However, the interface is
only a definition. The IDL interface defines what the interface to an object would be
if it existed. In your IDL file, each interface describes an object and the operations
clients can perform on that object.

This example creates a file, named simple.idl, that defines the simple interface. The
simple interface defines two methods: echo a string and quit.

The contents of your simple.idl file should look like:

interface simple
{
 void echo(in string msg);
 void quit();
};

The message parameter on the echo method has a directional attribute of in. The in
attribute specifies that the msg parameter is passed from the client to the server. An
out attribute would indicate the parameter is passed from the server to the client,
and inout would indicate the parameter is passed in both directions.

Compiling the IDL File
The oasoidlc compiler in $ORB_HOME/bin/ takes an IDL file as input and gen-
erates Java source files that define interfaces, classes, and data structures that you
use when implementing your object and client. The names of the generated objects
conform to the IDL/Java Language Mapping specification and are also used as file-
names with a .java extension. For example, simple class is in the simple.java file.

Note: The IDL compiler generates the stub and skeleton files. You do not modify
these files.

Note: The IDL Syntax is described in Chapter 18, IDL Syntax and
Semantics.
Accessing CORBA Objects from Java 17-5

Writing a Simple Server and Client
The command to run the compiler is:

prompt> oasoidlc [options] IDLfile

Options for the command are described “Using the IDL-to-Java Compiler” on page
17-7.

Compile the simple.idl file using the IDL compiler command, oasoidlc:

% oasoidlc -g java -t simple.idl

This generates the client stub and server skeleton, the Helper and Holder classes,
and the interface definition:

Figure 17–2 Creating an ORB application

In compiling the simple.idl file, you receive the following files:

File name File type

simple.java simple interface definition

_stub_simple.java IDL client stub

_simpleImplBase.java IDL server skeleton

Interface
Definition

Helper &
Holder

Definition
IDL Interface

oasoidlc compiler

IDL
client stub

IDL
server

skeleton
17-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL-to-Java Compiler
Do not edit any of the generated files. To implement your server object, create a
class that inherits the _ifcImplBase abstract class, where ifc is the interface name. In
this new class, implement the methods declared in ifc.java, the file generated for
your IDL interface.

For example, to implement a simple server, create a file called simpleImpl.java that
extends the IDL server skeleton, _simpleImplBase.java. Add and implement the
echo and quit methods that are defined in the simple.java interface definition. In
addition, you need to create the client application that invokes these methods
appropriately. “Defining the Operations” on page 17-11 demonstrates how to create
the server implementation of simple, simpleImpl.java.

Using the IDL-to-Java Compiler
The IDL-to-Java compiler is oasoidlc and is located in the $ORB_HOME/bin
directory in your Oracle Application Server installed machine. The oasoidlc com-
mand accepts CORBA IDL as input and produces a variety of files that can be used
to build Oracle ORB clients and servers.

OMG IDL specifications are accepted by the compiler. The IDL-to-Java language
mapping used by the compiler corresponds to the CORBA 2.2 specification.

The oasoidlc compiler also supports the pragmas ID, prefix, and version related to
the CORBA 2.2 Interface Repository. Refer to Chapter 6 of the CORBA specification
located at http://www.omg.org/ for more information.

Example
Compile the simple.idl file using the IDL compiler command, oasoidlc:

simpleHelper.java Helper class for simple. The most important methods
this class provides are the narrow method for typecast-
ing a returned object to be a simple object and the id
method that returns the interface’s identifier.

simpleHolder.java Holder class for simple. The Holder class enables a java
object to pass values back to clients.

Note: By default, the compiler generates tie classes. This can be
turned off by specifying the “-t ” option. See “Using the IDL-to-
Java Compiler” on page 17-7 for more information.

File name File type
Accessing CORBA Objects from Java 17-7

Using the IDL-to-Java Compiler
% oasoidlc -g java -t simple.idl

This generates the client stub and server skeleton, the Helper and Holder classes,
and the interface definition:

Options
You can specify all options either on the compiler command line or as resource set-
tings in your user environment. The following options only apply for Java output:

-D name{=val} Define a macro name. Without a value, equivalent to #define
name 1. With a value, equivalent to #define name value. All
macro names defined in this manner are processed before any
macros that appear in the input file.

-E Run only the preprocessor on the input. The preprocessed out-
put is written to stdout by default. Use -o to redirect the output
to a file. No stubs are generated.

-f Compiles a listing of all oasoidlc output files. The listing is
printed into wbjidlc.lst.

-g language Specify the coding language for generating output files. The
choices available are java and cplus.

-h Print usage information to stdout.

-I pathname Search for #include files in the directory specified by pathname.
See the following section titled Locating Include Files (-I) for
additional information. If not specified, only the current direc-
tory is searched.

-i Generate stub code for IDL from #include files. Normally, only
minimal declarations and no stubs are generated for include
files. See the following section titled Code Generation for
#include’d IDL Files for more information.

-o pathname Specifies the directory to contain the output files. This directory
must already exist. If not specified, the current directory is
used.
17-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL-to-Java Compiler
Locating Include Files (-I)
File names in #include statements are located in the following manner if they are
not absolute file names:

■ The directory containing the current file is searched if the filename is enclosed
in double quotes (#include “fn”). The use of angle brackets (#include <fn>)
suppresses the search in the current directory.

■ If the include file is not located in the current directory, the directories specified
with -I are searched in the order they appear on the command line.

Code Generation for #include’d IDL Files
To ensure a single point of definition for stub functions and objects such as type-
codes, definitions are not typically generated in the stub files for IDL from #include
files. Instead, you must generate the associated definitions by compiling the
included files separately. The generated header file, however, contains declarations
of all the types, functions, and objects from include files.

For example:

-p Specifies the Java package to contain the generated classes. You
can specify multiple levels of packages by separating the levels
with a dot, for example, -p pkg1.pkg2 . If the IDL file already
specifies a module, the package specified in the -p option is
prepended to the specified module. If not specified and the IDL
file does not specify a module, the generated classes are not in
any package.

-t Suppresses generation for tie support. See the section “Execut-
ing Legacy Code through the Tie Mechanism” on page 17-18
for information on the tie mechanism.

-T Print tracing information.

-U name Undefine a macro name. This is equivalent to #undef name. All
-U options are processed after the -D options and before any
preprocessing is performed on the input file. Therefore, this
option can only be used to undo macro definitions set using
the -D option.

-V Print a version banner to stderr.

-w Only show the error messages.
Accessing CORBA Objects from Java 17-9

Using the IDL-to-Java Compiler
File A.idl contains:

interface A
{

void doSomething();
};

File B.idl contains:

#include “A.idl”
interface B
{

A getA();
};

The header file, B.h, generated by compiling B.idl will contain declarations of
everything in both A.idl and B.idl, such as A, A_doSomething, B, and B_getA.
However, the client and server stub files for B.idl will only contain definitions from
B.idl, such as B and B_getA.

Similarly, if -S is specified when compiling B.idl, the generated server implementa-
tion skeleton will not contain a function template for A_doSomething.

A client or server program wishing to make use of B.idl needs to compile both
B.idl and A.idl and link in client or server stubs from both.

This behavior can be overridden with the -i option. With -i, compilation of B.idl
would create definitions for everything in both A.idl and B.idl.

Implementing the Interface Methods
An implementation is an actual instantiation of an interface. That is, the implemen-
tation is code that implements all of the functions and data elements that were
defined in the IDL interface.

Create a file for your the implementation class called simpleImpl.java. You imple-
ment the echo and quit functions within this file. The server implementation, sim-
pleImpl, extends the IDL-generated skeleton, _simpleImplBase.

The _simpleImplBase skeleton exists between the ORB and the server application,
so that any invocation for the server application is done through it. The skeleton
prepares the parameters, calls the server method, and saves any return values or
any out or inout parameters. In addition, the skeleton defines the simple__ id,
which is the identifier assigned by the IDL compiler for the simple interface.
17-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL-to-Java Compiler
public class simpleImpl extends _simpleImplBase implements simple
{
 public void echo (String msg)
 {
 }
 public void quit ()
 {
 }
}

Defining the Operations
Implement the echo and quit operations within the simpleImpl.java file. In this
example, the echo operation prints a string. The quit operation prints out a mes-
sage and stops the ORB runtime from processing requests through ORB::stop.

public class simpleImpl extends _simpleImplBase implements simple
{
 public void echo (String msg)
 {
 System.out.println("simpleImpl echo: "+msg);
 }
 public void quit ()
 {
 System.out.println("notifying server to shutdown");
 /*The init method grabs the active ORB object*/
 /*The stop method signals the ORB to end the ORB::run method*/
 /*that is blocking the server process*/
 (org.omg.CORBA.ORB. init ()). stop ();
 }
}

Note: The ORB::init method is used to initialize the ORB runtime for the process
and retrieve the active ORB object reference. If the ORB runtime is already activated
for the process, the init method returns the active ORB object reference. Retrieving
the ORB object through the init method is used so that the application is not respon-
sible for storing the object.
Accessing CORBA Objects from Java 17-11

Using the IDL-to-Java Compiler
Writing the Server Application
Your next task is to create the main portion of your server application. This section
shows sServer.java that does the following functions:

■ create a simple object instance and register the simple implementation with the
ORB

■ process client requests for simple until the ORB processing for this client is
stopped

Example 17–1 Initializing server object request environment

The sServer.java server application begins by initializing the ORB runtime for this
process through ORB::init. The ORB::init method may be called more than once.
However, this does not initialize multiple ORBs. Instead, if an ORB object is active
when the ORB::init method is invoked, the active ORB object reference is returned.
The ORB::shutdown method terminates the ORB runtime for this process.

class sServer
{

 public static void main(String[] args)
 {
 org.omg.CORBA.ORB orb;

 /*Start ORB runtime for this process */
 orb = org.omg.CORBA.ORB. init ();

 /*Tell the JVM to do a proper cleanup*/
 System.runFinalizersOnExit(true);
.
. /*main server code is described in the following examples*/
.
 /*Finally, shut down the ORB runtime*/
 orb. shutdown ();
 }
}

Note: Invoke the System.runFinalizersOnExit method so that the ORB cleans up
correctly before shutdown.
17-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL-to-Java Compiler
Example 17–2 Create and register a simple object instance with the ORB

The following segment of the sServer.java server application creates a simple object
instance and registers it with the ORB. The object instance is created through sim-
ple’s constructor; the object is registered with the ORB through the ORB::connect
method. The ORB::connect method is cast to oracle.oas.orb.CORBA.ORB because
Oracle extended the method for setting the thread policy for the object and specify-
ing stateless or transient stateful objects.

 simple obj;

 /*Create a simple object*/
 obj = (simple) new simpleImpl();

 /*Register implementation with the ORB*/
 ((oracle.oas.orb.CORBA.ORB)orb). connect (obj,
 oracle.oas.orb.CORBA.ORB.OBJECT_STATELESS, "SimpleServer");

One of the optional parameters on the ORB::connect method is an integer value
that defines whether or not the object instance of the implementation is to be
transient stateful (OBJECT_TRANSIENT) or stateless (OBJECT_STATELESS). An
OBJECT_STATELESS value registers simple’s implementation with the ORB for
receiving loosely-bound requests.

connect Method
The connect method tells the ORB that an object is ready to receive requests.
While the IDL/Java Language Mapping only allows transient objects, the ORB
extends the function to enable you to set the thread policy for the object and also to
specify stateless or transient stateful objects. Clients can access stateless objects
through bind() . Threads and the state of objects are not related.

Object State
Briefly, the ORB can have two types of objects: stateless and transient stateful. State-
less objects are used for operations without context, while transient stateful objects
maintain information for the duration of the server process. Stateful objects are
called transient because they are not stored in a database or file system. The offcy-
cle of the object ends when the process terminates.

The connect() method is non-blocking. It registers the object, then handles
requests. The implementation of the simple demo uses a stateless object. The client
uses bind() to get the object reference.
Accessing CORBA Objects from Java 17-13

Using the IDL-to-Java Compiler
If you set the object’s state to be OBJECT_STATELESS, you can access the object
through bind() .

Example 17–3 Block for servicing requests

The ORB::run method blocks the thread to service requests for the operations
implemented in simple. This method blocks until the client requests the ORB to
stop servicing requests through an ORB::stop method. In this simple example, the
implementation for quit stops the ORB from servicing any more requests.

/*Block while object requests are being serviced by the orb*/
/*This is unblocked when the orb is stopped (orb.stop()) */
orb. run ();

Example 17–4 Deactivate server and ORB. Release resources.

When ORB::run has returned, you need to deactivate the object instance through
ORB::disconnect. This method deactivates the object and releases the object refer-
ence.

/*When orb.run returns, the ORB is done servicing requests*/
/*Disconnect the simple object. This releases the object instance*/
/*deactivates the implementation and destroys the implementation*/
orb. disconnect (obj);

Writing a Client Application
After writing the server, the client needs to be created. The client for the simple
example is located within sClient.java.

Example 17–5 Initialize client

The sClient.java client initializes the ORB runtime for the client process through
ORB::init. After initializing the ORB runtime, the client retrieves a loosely-bound
object reference to a simple object through ORB::bind. The ORB returns an object
reference to any simple implementation that satisfies the interface identifier and
implementation identifier supplied with the bind. Normally, the client supplies
only the interface identifier created in the IDL files. In this example, the simple iden-
tifier is returned by the simpleHelper.id() method.
17-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL-to-Java Compiler
The ORB::bind retrieves an object reference to a simple object. However, the object
reference returned is of type Object. The client uses the narrow method to typecast
the returned object reference to an object of type simple.

Once the client has the object reference, the simple methods, echo and quit, can be
invoked.

class sClient
{
 public static void main(String[] args)
 {
 /*Create and start an ORB */
 org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init();

 /*Retrieve an object reference to an object that implements simple*/
 /*Upon return, typecast the object reference to the simple object*/
 simple obj = simpleHelper. narrow (orb. bind (simpleHelper.id()));

 /*Process incoming arguments*/
 for (int i = 0; i <args.length; i++)
 {
 /*execute the simple.quit or simple.echo methods, as appropriate*/
 if (args[i].equals("-q")) obj. quit ();
 else obj. echo (args[i]);
 }

Example 17–6 Release memory and deactivate

Finally, the client calls the Object::_release method to release the resources used by
an object reference (obj) and ORB::shutdown to terminate the ORB runtime for this
process.

Note: If you want a specific implementation, provide the string that defines the
implementation. For example, to return the implementation created in this exam-
ple, the string provided on the sServer.java ORB::connect method, "SimpleServer"
describes this version of the simple implementation. If the client supplies only the
interface identifier, the ORB may retrieve any available implementation instance.

Note: If you pass a NULL or an empty string as a parameter when invoking the
server’s method, both are translated to an empty string when passed to the server.
Accessing CORBA Objects from Java 17-15

Running the Server and Client Applications
 /*Release the object reference memory*/
 obj. _release ();

 /*Shut down the ORB*/
 orb. shutdown ();
 }
}

Running the Server and Client Applications
Once you have completed creating the client and the server, and generating all
stubs and skeletons, you are ready to run your application. In order to run the sim-
ple demo, you should do the following:

1. Configure the ORB: The configuration for the ORB is described in chapter 9 in
the OAS Administration Guide.

2. Start the ORB through the OAS 4.0 Administration GUI.

3. Execute the simple demo.

a. Start the server process in the background:

% java sServer&

b. Verify that the simple interface was registered with the ORB through the
oasostat command.

% oasostat -l
Interface Implementation Active Request

===

IDL:simple:1.0 SimpleServer 3 41

 host:pid test-sun:16053 2

 test-sun:16054 1

 test-sun:16052 0

IDL:omg.org/CosNaming/NamingContext:1.0 test-sun 1 0

 host:pid test-sun:15388 0

IDL:ydf/loader:1.0 test-sun:15388 1 0

 host:pid test-sun:15388 0

IDL:ydimr/imr:1.0 orb.oasoorb 1 0

 host:pid test-sun:15388 0

IDL:ydmtd/svr:1.0 orb.oasoorb 1 0

 host:pid test-sun:15388 0
17-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Running the Server and Client Applications

IDL:ydreaper/ydreap:1.0 test-sun:15388 1 0

 host:pid test-sun:15388 0

The output shows that the simple interface, shown by the interface identi-
fier IDL:simple:1.0, was registered with the implementation name of Sim-
pleServer (defined in sServer.java on the ORB::connect method) and has
had 41 requests invoked on 3 implementation instances.

There are currently three active simple objects. These instances exist on test-
sun and listen on process identifiers 16053, 16054, and 16052. The number
of requests invoked against each instance is listed beside the host:pid list-
ing. The remainder of requests were invoked upon instances that are no
longer active.

c. Run the client, specifying the string to be echoed in quotes:

$ java sClient “your_message”

The server should echo your string:

simpleImpl echo: “your _message”

d. When you have completed your test, kill simple with the quit method:

% java sClient -q

Note that the simple interface is still registered with the ORB, but is identi-
fied as inactive (0):

% oasostat -l
Interface Implementation Active Request

===

IDL:simple:1.0 SimpleServer 0 41

IDL:omg.org/CosNaming/NamingContext:1.0 test-sun 1 0

 host:pid test-sun:15388 0

IDL:ydf/loader:1.0 test-sun:15388 1 0

 host:pid test-sun:15388 0

Note: If you do not specify an implementation name on the ORB::connect
method, the string "orb.javaApp" will be displayed instead of SimpleServer.
Accessing CORBA Objects from Java 17-17

Executing Legacy Code through the Tie Mechanism
IDL:ydimr/imr:1.0 orb.oasoorb 1 0

 host:pid test-sun:15388 0

IDL:ydmtd/svr:1.0 orb.oasoorb 1 0

 host:pid test-sun:15388 0

IDL:ydreaper/ydreap:1.0 test-sun:15388 1 0

 host:pid test-sun:15388 0

Executing Legacy Code through the Tie Mechanism
You may have several existing applications that are not CORBA objects. The tie
mechanism enables CORBA clients to execute methods on non-CORBA objects
such as legacy applications. You can use this mechanism if you do not want to
restructure your existing applications to follow the CORBA hierarchy.

The tie mechanism creates Java classes (called “tie” classes) that forward (or “dele-
gate”) method invocation to the real implementation, which does not have to fit in
the class hierarchy specified by the IDL/Java Language Mapping. This is useful
because Java allows only single inheritance and the IDL/Java Language Mapping
requires inheritance from a base class written in Java. All CORBA objects are
required to inherit from an IDL generated class.

The oasoidlc compiler generates a tie class for each interface defined in IDL. The
compiler generates a tie class for the implementation and an Operations class for
the existing legacy implementation. In the simple demo presented in the previous
chapter, oasoidlc generates the following tie files:

Table 17–2 Tie files generated for simple

File Description

_tie_simple.java Defines the _tie_simple class, which implements the
IDL class, _simpleImplBase class. The constructor for
tie objects takes an argument whose type is the corre-
sponding Operations class. This argument specifies the
object to which methods are delegated.

simpleOperations.java Defines the simpleOperations interface, which speci-
fies the methods in the IDL. This is the type for the
object that is delegated.
17-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Executing Legacy Code through the Tie Mechanism
To tie together a legacy object within a CORBA server application, you must make
two modifications:

■ The implementation implements the Operations interface, instead of the IDL
generated skeleton class.

■ The server application registers the implementation with the tie object, not the
implementation object.

Changes to the Implementation
If you are using tie classes for using legacy code, your server implementation imple-
ments the Operations interface instead of the skeleton class.

Example 17–7 Extending the Implementation with a Tie Class

In simpleImpl.java, the simpleImpl class implements the simpleOperations inter-
face instead of the _simpleImplBase class.

public class simpleImpl implements simpleOperations {
public echo(String str) { ... }
public void quit() {....}

}

The skeleton classes are still used; they are extended by the tie classes.

Changes to the Server
If you are using tie classes, the object in the ORB::connect call is an instance of the
tie class instead of the implementation class. However, the implementation object is
passed in as a parameter within the tie object; thus, the tie object can invoke meth-
ods from the non-CORBA object. The server will instantiate both the implementa-
tion object and the tie object.

Example 17–8 Connecting to the Tie object

The following example shows that instead of creating an instance of the simpleImpl
object, sobj, for the ORB::connect call, a tie object, tobj, is created and given within
the connect call. The simpleImpl object is passed in to the tie object as an input
parameter.

/*create the simple implementation instance*/
simpleImpl sobj = new simpleImpl();
Accessing CORBA Objects from Java 17-19

Executing Legacy Code through the Tie Mechanism
/*create the tie instance given the simple implementation*/
_tie_simple tobj = new _tie_simple(sobj);

((oracle.oas.orb.CORBA.ORB)orb).connect(tobj ,
oracle.oas.orb.CORBA.ORB.OBJECT_STATELESS);

The invoke method in the skeleton calls the appropriate method in the tie class. The
method in the tie class calls the legacy method in the supplied object.

The same client can be used for both tie and non-tie cases. When the client invokes
a call on an object, the process flow looks like the following:

Figure 17–3 Control flow using the tie class

sClient.java

public class sClient {
public static void main(String[] args) {

// init stuff here (see code below)
obj.echo(args[1]);
// close stuff here (see code below)

}
}

CLIENT

SERVER

_tie_simple.java

public class _tie_AccountManager extends simpleImplBase {
 private simpleOperations $_delegate;

 public _tie_simple(simpleOperations $_delegate){ ... }
 public void echo (String msg){

 this.$_delegate.echo(msg);
 }

simpleImpl.java

public class simpleImpl implements simpleOperations{
public echo (String name) {
// ...
}

}

17-20 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

IDL Syntax and Sem
18

 IDL Syntax and Semantics

This appendix describes the syntax and semantic rules that your interface defini-
tions need to follow. This appendix includes the following subjects:

■ About IDL

■ Lexical Conventions

■ IDL Preprocessing

■ IDL Grammar

■ IDL Specification

■ Inheritance

■ Constant Declarations

■ Type Declaration

■ Exception Declaration

■ Operation Declaration

■ Attribute Declaration

■ CORBA Module

■ Names and Scoping

■ Standard Exceptions
antics 18-1

About IDL
About IDL
IDL (Interface Definition Language) defines interfaces through which clients and
servers communicate with one another through the ORB. An interface definition
written in IDL provides a high-level definition of the interface and specifies each
operation’s parameters. An IDL file provides the information needed to develop cli-
ents that use the interface’s operations and servers that implement those operations.

The mapping of IDL to a programming language construct depends on the facili-
ties available in the client language. For example, an IDL exception might be
mapped to an exception in one language or to a structure in another language that
has no notion of exceptions.

A source file containing interface specifications written in IDL must have an ".idl"
extension. The ORB provides an IDL compiler that translates IDL files to one of
three languages: C, C++, and Java. The binding of IDL concepts to the Java lan-
guage is described in Chapter 19, IDL-to-Java Language Mapping.

How IDL Compares to C++
IDL is similar in semantics to the C++ language, although new keywords are intro-
duced to support distribution concepts. It also provides full support for standard
C++ preprocessing features. The IDL specification is expected to track relevant
changes to C++ introduced by the ANSI standardization effort.

The IDL grammar is a subset of the proposed ANSI C++ standard, with additional
constructs to support the operation invocation mechanism. IDL is a declarative lan-
guage. It supports C++ syntax for constant, type, and operation declarations; it
does not include any algorithmic structures or variables.

IDL-specific pragmas may appear anywhere in a specification; the textual location
of these pragmas may be semantically constrained by a particular implementation.

While attempting to conform to the C++ syntax, IDL is more restrictive. The current
restrictions are:

■ A function return type is mandatory.

Note: Information in this section was extracted from Chapter 24,
Mapping of OMG IDL to Java, of OMG’s CORBA 2.2 specification
document. Where similarities exist in code and descriptions of
mappings between OMG’s specification document and this man-
ual, the code or descriptions are copyright of the Object Manage-
ment Group.
18-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Lexical Conventions
■ A name must be supplied with each formal parameter in an operation declara-
tion.

■ A parameter list consisting of the single token void is not permitted as a syn-
onym for an empty parameter list.

■ Tags are required for structures, discriminated unions, and enumerations.

■ Integer types cannot be defined as simply int or unsigned; they must be
declared explicitly as short or long.

■ The char type cannot be qualified by signed or unsigned keywords.

Lexical Conventions
The lexical conventions of IDL define tokens in an IDL specification and describes
comments, identifiers, keywords, and literals, such as integer, character, and float-
ing point constants and string literals.

An IDL specification logically consists of one or more files.

IDL uses the ISO Latin-1 (8859.1) character set. This character set is divided into
alphabetic characters (letters), digits, graphic characters, the space (blank) charac-
ter, and formatting characters.

Alphabetic Characters
Table 18–1 shows the IDL alphabetic characters; upper- and lower-case equivalen-
cies are paired.

Table 18–1 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with
grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with
acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with
circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with
tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with
diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with
ring above
IDL Syntax and Semantics 18-3

Lexical Conventions
Gg Upper/Lower-case G Upper/Lower-case dip-
thong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with
cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with
grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with
acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with
circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with
diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with
grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with
acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with
circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with
diaeresis

Qq Upper/Lower-case Q Upper/Lower-case Icelandic
eth

Rr Upper/Lower-case R Ññ Upper/Lower-case N with
tilde

Ss Upper/Lower-case S Òò Upper/Lower-case O with
grave accent

Tt Upper/Lower-case T Óó Upper/Lower-case O with
acute accent

Uu Upper/Lower-case U Ôô Upper/Lower-case O with
circumflex accent

Vv Upper/Lower-case V Õõ Upper/Lower-case O with
tilde

Ww Upper/Lower-case W Öö Upper/Lower-case O with
diaeresis

Xx Upper/Lower-case X Øø Upper/Lower-case O with
oblique stroke

Table 18–1 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

AE ae

Do
18-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Lexical Conventions
Decimal Digits
Table 18–2 shows the IDL decimal digits.

Graphic Characters
Table 18–3 shows the graphic characters.

Yy Upper/Lower-case Y Ùù Upper/Lower-case U with
grave accent

Zz Upper/Lower-case Z Úú Upper/Lower-case U with
acute accent

Ûû Upper/Lower-case U with
circumflex accent

Üü Upper/Lower-case U with
diaeresis

Upper/Lower-case Y with
acute accent

Upper/Lower-case Icelandic
thorn

ß Lower-case German sharp S

ÿ Lower-case Y with diaeresis

Table 18–2 Decimal Digits

Decimal Digits

0 1 2 3 4 5 6 7 8 9

Table 18–3 Graphic Characters

Char. Description Char. Description

! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

number sign £ British pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand broken bar

Table 18–1 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Yy
IDL Syntax and Semantics 18-5

Lexical Conventions
’ apostrophe § section/paragraph sign

(left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ring above, degree sign

; semicolon plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave 1
4

vulgar fraction 1/4

{ left curly bracket 1
2

vulgar fraction 1/2

| vertical line 3
4

vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde ¥ multiplication sign

division sign

Table 18–3 Graphic Characters

Char. Description Char. Description
18-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Lexical Conventions
Formatting Characters
Table 18–4 shows the formatting characters.

Tokens
There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. White space, such as blanks, horizontal and vertical tabs, newlines,
formfeeds, and comments, are ignored except if they separate tokens. Some white
space is required to separate adjacent identifiers, keywords, and constants.

Comments
Comments may contain alphabetic, digit, graphic, space, horizontal tab, vertical
tab, form feed and newline characters. The characters /* start a comment, which ter-
minates with the characters */. These comments do not nest. The characters // start a
comment, which terminates at the end of the line on which they occur. The com-
ment characters //, /*, and */ have no special meaning within a // comment and are
treated just like other characters. Similarly, the comment characters // and /* have
no special meaning within a /* comment.

Identifiers
An identifier is a sequence of alphabetic, digit, and underscore (“_”) characters. The
first character must be an alphabetic character.

Table 18–4 Formatting Characters

Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015
IDL Syntax and Semantics 18-7

Lexical Conventions
Identifiers are not case-sensitive. Any identifiers that differ only in case will collide
and will yield a compilation error. However, an identifier for a definition must be
spelled consistently (with respect to case) throughout a specification.

When comparing two identifiers to avoid collisions:

■ Upper- and lower-case letters are treated as the same letter. Table 18–1, “The
114 Alphabetic Characters (Letters)” defines the associated equivalence map-
ping.

■ The comparison does not take into account equivalences between digraphs and
pairs of letters (for example, “ae” and “ ” are not considered equivalent) or
equivalences between accented and non-accented letters (for example, “Á” and
“A” are not considered equivalent).

■ All characters are significant.

■ There is only one name space for IDL identifiers. For example, using the same
identifier for a constant and an interface produces a compilation error.

Keywords
The identifiers listed in Table 18–5 are reserved for use as keywords, and may not
be used otherwise.

Keywords obey the rules for identifiers (see “Identifiers” on page 18-7) and must be
written exactly as shown in the above list. For example, boolean is correct; Boolean
produces a compilation error. the Object keyword can be used as a type specifier.

Table 18–5 Keywords

any double interface readonly unsigned

attribute enum long sequence union

boolean exception module short void

case FALSE Object string wchar

char fixed octet struct wstring

const float oneway switch

context in out TRUE

default inout raises typedef

ae
18-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Lexical Conventions
Punctuation Characters
IDL specifications use the following characters as punctuation:

; { } : , = + -
() < > [] ' "
\ | ^ & * / % ~

Preprocessor Tokens
In addition, the following tokens are used by the preprocessor:

! || &&

Literals

Integer Literals
An integer literal consisting of a sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to
be an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of
digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen).
Hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written as 12 (deci-
mal), 014 (octal), or 0XC (hexadecimal).

Character Literals
A character literal is one or more characters enclosed in single quotes, as in ’x’.
Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255 (deci-
mal). The value of a space, alphabetic, digit or graphic character literal is the numer-
ical value of the character as defined in the ISO Latin-1 (8859.1) character set
standard (See Table 18–1, “The 114 Alphabetic Characters (Letters)”, Table 18–2,
“Decimal Digits”, and Table 18–3, “Graphic Characters”). The value of a null is 0.
The value of a formatting character literal is the numerical value of the character as
defined in the ISO 646 standard (See Table 18–4, “Formatting Characters”). The
meaning of all other characters is implementation-dependent.
IDL Syntax and Semantics 18-9

Lexical Conventions
Nongraphic characters must be represented using escape sequences as defined
below in Table 18–6. Note that escape sequences must be used to represent single
quote and backslash characters in character literals.

If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal dig-
its that are taken to specify the value of the desired character. The escape \xhh con-
sists of the backslash followed by x followed by one or two hexadecimal digits that
are taken to specify the value of the desired character. A sequence of octal or hexa-
decimal digits is terminated by the first character that is not an octal digit or a hexa-
decimal digit, respectively. The value of a character constant is implementation
dependent if it exceeds that of the largest char.

Wide character and wide string literals are specified exactly like character and
string literals. All character and string literals, both wide and non-wide, may only
be specified (portably) using the characters found in the ISO 8859-1 character set.
That is, interface names, operations names, and type names will continue to be lim-
ited to the ISO 8859-1 character set.

Floating-point Literals
A floating-point literal consists of an integer part, a decimal point, a fraction part,
an e or E, and an optionally signed integer exponent. The integer and fraction parts
both consist of a sequence of decimal (base ten) digits. Either the integer part or the

Table 18–6 Escape Sequences

Description
Escape
Sequence Description

Escape
Sequence

newline \n alert \a

horizontal tab \t backslash \\

vertical tab \v question mark \?

backspace \b single quote \'

carriage return \r double quote \"

form feed \f octal number \ooo

hexadecimal number \xhh
18-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

IDL Preprocessing
fraction part (but not both) may be missing; either the decimal point or the letter e
(or E) and the exponent (but not both) may be missing.

String Literals
A string literal is a sequence of characters (as defined in “Character Literals” on
page 18-9) surrounded by double quotes, as in "...".

Adjacent string literals are concatenated. Characters in concatenated strings are
kept distinct. For example:

"\xA" "B"
contains the two characters \xA and B after concatenation (and not the single hexa-
decimal character \xAB).

The size of a string literal is the number of character literals enclosed by the quotes,
after concatenation. The size of the literal is associated with the literal. Within a
string, the double quote character " must be preceded by a \.

A string literal may not contain the character '\0'.

Fixed-Point Literals
A fixed-point decimal literal consists of an integer part, a decimal point, a fraction
part, and a d or D. The integer and fraction parts both consist of a sequence of deci-
mal (base 10) digits. Either the integer part of the fraction part (but not both) may
be missing; the decimal point (but not the letter d or D) may be missing.

IDL Preprocessing
An IDL specification logically consists of one or more files. A file is conceptually
translated in several phases. The first phase is preprocessing, which is controlled by
directives introduced by lines starting with #.

IDL preprocessing, which is based on ANSI C++ preprocessing, provides macro
substitution, conditional compilation, and source file inclusion. Directives control
line numbering in diagnostics and symbolic debugging, generate a diagnostic mes-
sage with a given token sequence, and perform implementation-dependent actions
(the #pragma directive). Certain predefined names are available. These facilities are
conceptually handled by a preprocessor, which may or may not actually be imple-
mented as a separate process.

Lines beginning with # (also called “directives”) communicate with the preproces-
sor. White space may appear before the #. These lines have syntax independent of
the rest of IDL; they may appear anywhere and have effects that last (independent
IDL Syntax and Semantics 18-11

IDL Preprocessing
of the IDL scoping rules) until the end of the translation unit. The textual location
of IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a
source file by placing a backslash character (\), immediately before the new line
character at the end of the line to be continued. The preprocessor effects the contin-
uation by deleting the backslash and the new line before the input sequence is
divided into tokens.

The result of preprocessing is a sequence of tokens. After preprocessing, such a
sequence of tokens is called a translation unit. A preprocessing token can be an
IDL token (See “Tokens” on page 18-7), a filename as in a #include directive, or any
single character, other than white space, that does not match another preprocessing
token.

The primary use of the preprocessing facilities is to include definitions from other
IDL specifications. Text in files included with a #include directive is treated as if it
appeared in the including file.

Version control
You can control the version number for your interface through the #pragma version
preprocessing command. If the version is not specified, it defaults to 1.0.

#pragma version < componentname > < version-number >

where <componentname> is the name for the interface defined in the form <module-
name>::<interfacename>. The name should include all enclosing modules. The
#pragma version definition must be placed after the interface definition.

Example 18–1 Adding a version number for simple.idl

interface simple
{
 void echo(in string msg);
 void quit();
};
#pragma version simple 2.2

This changes the simple interface identifier within simpleHelper to the following:

"IDL:simple:2.2"

Note: A backslash character may not be the last character in a source file.
18-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

IDL Grammar
IDL Grammar
The description of IDL grammar uses a syntax notation that is similar to Extended
Backus-Naur format (EBNF). Table 18–7 lists the symbols used in this format and
their meaning.

The IDL language is summarized below and described in more detail in the sec-
tions that follow.

<specification> ::= <definition> +

<definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”

<module> ::= “module” <identifier> “{“ <definition> + “}”

<interface> ::= <interface_dcl>
| <forward_dcl>

<interface_dcl> ::= <interface_header> “{” <interface_body> “}”

<forward_dcl> ::= “interface” <identifier>

Table 18–7 IDL EBNF Format

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Non-terminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic
unit

[] The enclosed syntactic unit is optional—may occur zero or one
time
IDL Syntax and Semantics 18-13

IDL Grammar
<interface_header> ::= “interface” <identifier> [<inheritance_spec>]

<interface_body> ::= <export> *

<export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

<inheritance_spec> ::= “:” <scoped_name> { “,” <scoped_name> } *

<scoped_name> ::= <identifier>
| “::” <identifier>
| <scoped_name> “::” <identifier>

<const_dcl> ::= “const” <const_type> <identifier> “=”
<const_exp>

<const_type> ::= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_name>

<const_exp> ::= <or_expr>
<or_expr> ::= <xor_expr>

| <or_expr> “|” <xor_expr>
<xor_expr> ::= <and_expr>

| <xor_expr> “̂ ” <and_expr>
<and_expr> ::= <shift_expr>

| <and_expr> “&” <shift_expr>

<shift_expr> ::= <add_expr>
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

<add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>
18-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

IDL Grammar
<mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

<unary_operator> ::= “-”
| “+”
| “~”

<primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

<literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal> ::= “TRUE”
| “FALSE”

<positive_int_const> ::= <const_exp>
<type_dcl> ::= “typedef” <type_declarator>

| <struct_type>
| <union_type>
| <enum_type>
| "native" <simple_declarator>

<type_declarator> ::= <type_spec> <declarators>

<type_spec> ::= <simple_type_spec>
| <constr_type_spec>

<simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_name>

<base_type_spec> ::= <floating_pt_type>
| <integer_type>
| <char_type>
IDL Syntax and Semantics 18-15

IDL Grammar
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>

<template_type_spec>::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<declarators> ::= <declarator> { “,” <declarator> } *

<declarator> ::= <simple_declarator>
| <complex_declarator>

<simple_declarator> ::= <identifier>

<complex_declarator>::= <array_declarator>

<floating_pt_type> ::= “float”
| “double”
| “long” “double”

<integer_type> ::= <signed_int>
| <unsigned_int>

<signed_int> ::= <signed_long_int>
| <signed_short_int>
| <signed_longlong_int>

<signed_long_int> ::= “long”

<signed_short_int> ::= “short”

<signed_longlong_int>::=“long” “long”

<unsigned_int> ::= <unsigned_long_int>
| <unsigned_longlong_int>
| <unsigned_short_int>

<unsigned_long_int> ::= “unsigned” “long”
18-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

IDL Grammar
<unsigned_short_int>::= “unsigned” “short”

<char_type> ::= “char”

<boolean_type> ::= “boolean”

<octet_type> ::= “octet”
<any_type> ::= “any”
<object_type> ::= “object”
<struct_type> ::= “struct” <identifier> “{” <member_list> “}”

<member_list> ::= <member>+

<member> ::= <type_spec> <declarators> “;”

<union_type> ::= “union” <identifier> “switch”
“(” <switch_type_spec> “)”
“{” <switch_body> “}”

<switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

<switch_body> ::= <case>+

<case> ::= <case_label>+ <element_spec> “;”

<case_label> ::= “case” <const_exp> “:”
| “default” “:”

<element_spec> ::= <type_spec> <declarator>

<enum_type> ::= “enum” <identifier> “{” <enumerator>
{ “,” <enumerator> } * “}”

<enumerator> ::= <identifier>

<sequence_type> ::= “sequence” “<” <simple_type_spec> “,”
<positive_int_const> “>”

| “sequence” “<” <simple_type_spec> “>”

<string_type> ::= “string” “<” <positive_int_const> “>”
| “string”
IDL Syntax and Semantics 18-17

IDL Grammar
<wide_string_type> ::= “wstring” “<” <positive_int_const> “>”
| “wstring”

<array_declarator> ::= <identifier> <fixed_array_size>+

<fixed_array_size> ::= “[” <positive_int_const> “]”

<attr_dcl> ::= [“readonly”] “attribute” <param_type_spec>
<simple_declarator> { “,” <simple_declarator> }*

<except_dcl> ::= “exception” <identifier> “{“ <member>* “}”

<op_dcl> ::= [<op_attribute>] <op_type_spec> <identifier>
<parameter_dcls> [<raises_expr>]
[<context_expr>]

<op_attribute> ::= “oneway”

<op_type_spec> ::= <param_type_spec> | “void”

<parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> } * “)”
| “(” “)”

<param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>

<param_attribute> ::= “in”
| “out”
| “inout”

<raises_expr> ::= “raises” “(” <scoped_name> { “,”
<scoped_name> } * “)”

<context_expr> ::= “context” “(” <string_literal> { “,”
<string_literal> } * “)”

<param_type_spec> ::= <base_type_spec>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>
| <scoped_name>

<fixed_pt_type> ::= “fixed_pt_type” “<” <positive_int_const> “>”
| “fixed_pt_type”

<fixed_pt_const_type> ::= “fixed”
18-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

IDL Specification
IDL Specification
An IDL specification consists of one or more type definitions, constant definitions,
exception definitions, or module definitions. The syntax is:

<specification> ::= <definition> +

<definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”

Module Declaration
A module definition satisfies the following syntax:

<module> ::= “module” <identifier> “{“ <definition> + “}”

For example, in the PingDemo sample, the module demo is defined with the key-
word module followed by the identifier of demo, as follows:

module demo
{
. . .
};

The module construct is used to scope IDL identifiers; see “Names and Scoping” on
page 18-44 for details.

For specifications of See the following section

<const_dcl> “Constant Declarations” on page 18-25

<type_dcl> “Type Declaration” on page 18-29

<except_dcl> “Exception Declaration” on page 18-39

<interface> “Interface Declar1spbation” on page 18-20

<module> “Module Declaration” on page 18-19
IDL Syntax and Semantics 18-19

IDL Specification
Interface Declar1spbation
An interface definition satisfies the following syntax:

<interface> ::= <interface_dcl>
| <forward_dcl>

<interface_dcl> ::= <interface_header> “{” <interface_body> “}”

<forward_dcl> ::= “interface” <identifier>

<interface_header> ::= “interface” <identifier>
[<inheritance_spec>]

<interface_body> ::= <export> *

<export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

Interface Header
The interface header consists of two elements:

■ The interface name. The name must be preceded by the keyword interface, and
consists of an identifier that names the interface.

■ An optional inheritance specification. The inheritance specification is described
in “Inheritance Specification” on page 18-21.

The <identifier> that names an interface defines a legal type name. Such a type
name may be used anywhere an <identifier> is legal in the grammar, subject to
semantic constraints as described in the following sections. Since one can only hold
references to an object, the meaning of a parameter or structure member which is
an interface type is as a reference to an object supporting that interface. Each lan-
guage binding describes how the programmer must represent such interface refer-
ences.

For example, the following describes an interface for the demo.PingDemo interface,
where the keyword interface is followed by the interface name, PingDemo.
18-20 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

IDL Specification
module demo
{
 interface PingDemo

 {
 void ping();
 void shutdown();
 };
};

Inheritance Specification
The syntax for inheritance is as follows:

<inheritance_spec> ::= “:” <scoped_name> {“,” <scoped_name>}*

<scoped_name> ::= <identifier>
| “::” <identifier>
| <scoped_name> “::” <identifier>

Each <scoped_name> in an <inheritance_spec> must denote a previously defined
interface. See “Inheritance” on page 18-23 for the description of inheritance.

For example, if a new interface, derived, wants to derive from an established inter-
face, simple, the following would be its IDL definition:

interface derived : simple
{
};

Or, to inherit from the PingDemo interface in the demo module, do the following:

interface derived : demo :: PingDemo
{
};

Interface Body
The interface body contains the following kinds of declarations:

■ Constant declarations, which specify the constants that the interface exports.
Constant declaration syntax is described in “Constant Declarations” on page
18-25.

■ Type declarations, which specify the type definitions that the interface exports.
Type declaration syntax is described in “Type Declaration” on page 18-29.
IDL Syntax and Semantics 18-21

IDL Specification
■ Exception declarations, which specify the exception structures that the interface
exports. Exception declaration syntax is described in “Exception Declaration”
on page 18-39.

■ Attribute declarations, which specify the associated attributes exported by the
interface. Attribute declaration syntax is described in “Attribute Declaration”
on page 18-43.

■ Operation declarations, which specify the operations that the interface exports
and the format of each, including operation name, the type of data returned,
the types of all parameters of an operation, legal exceptions which may be
returned as a result of an invocation, and contextual information which may
affect method dispatch; operation declaration syntax is described in “Operation
Declaration” on page 18-40.

Empty interfaces (those that contain no declarations) are permitted.

Some implementations may require interface-specific pragmas to precede the inter-
face body.

Forward Declaration
A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax consists sim-
ply of the keyword interface followed by an <identifier> that names the interface.
The actual definition must follow later in the specification.

Multiple forward declarations of the same interface name are legal.

For example, in defining the CosNaming module, the BindingIterator interface is
defined as a forwarded declaration at the beginning of the body, but it not fully
defined until the end of the body.

module CosNaming
{
 interface BindingIterator ;
 . . .
 /*other interface definitions that refer to BindingIterator */
 . . .
 interface BindingIterator {
 boolean next_one(out Binding b);
 boolean next_n(in unsigned long how_many,
 out BindingList bl);
 void destroy();
 };
};
18-22 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Inheritance
Inheritance
An interface can be derived from another interface, which is then called a base
interface of the derived interface. A derived interface, like all interfaces, may
declare new elements (constants, types, attributes, exceptions, and operations). In
addition, unless redefined in the derived interface, the elements of a base interface
can be referred to as if they were elements of the derived interface. The name reso-
lution operator (::) may be used to refer to a base element explicitly; this permits ref-
erence to a name that has been redefined in the derived interface.

A derived interface may redefine any inherited type, constant, and exception
names. The scope rules for such inherited names are described in “CORBA Mod-
ule” on page 18-44. Inherited operations and attributes cannot be redefined by the
derived interface, however.

An interface is called a direct base if it is mentioned in the <inheritance_spec> and
an indirect base if it is not a direct base but is a base interface of one of the inter-
faces mentioned in the <inheritance_spec>.

An interface may be derived from any number of base interfaces. Such use of more
than one direct base interface is often called multiple inheritance. The order of deri-
vation is not significant.

An interface may not be specified as a direct base interface of a derived interface
more than once; however, it may be an indirect base interface more than once. Con-
sider the following example:

interface A { ... }
interface B: A { ... }
interface C: A { ... }
interface D: B, C { ... }
The relationships between these interfaces are shown in Figure 18–1. This “dia-
mond” shape is legala.
IDL Syntax and Semantics 18-23

Inheritance
Figure 18–1 Legal Multiple Inheritance Example

Reference to base interface elements must be unambiguous. Reference to a base
interface element is ambiguous if the expression used refers to a constant, type, or
exception in more than one base interface. (It is currently illegal to inherit from two
interfaces with the same operation or attribute name, or to redefine an operation or
attribute name in the derived interface.) Ambiguities can be resolved by qualifying
a name with its interface name (for example, using a <scoped_name>).

References to constants, types, and exceptions are bound to an interface when it is
defined with the equivalent global <scoped_name>s. This guarantees that the syn-
tax and semantics of an interface are not changed when the interface is a base inter-
face for a derived interface.

Consider the following example:

const long L = 3;

interface A {
void f (in float s[L]); // s has 3 floats

};

interface B {
const long L = 4;

};

interface C: B, A {} // what is f()’s signature?

The early binding of constants, types, and exceptions at interface definition guaran-
tees that the signature of operation f in interface C is:

void f(in float s[3]);

A

B

D

C

18-24 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Constant Declarations
which is identical to that in interface A. This rule also prevents redefinition of a con-
stant, type, or exception in the derived interface from affecting the operations and
attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to be
imported into the current naming scope. A type name, constant name, enumeration
value name, or exception name from an enclosing scope can be redefined in the cur-
rent scope. An attempt to use an ambiguous name without qualification is a compi-
lation error.

Operation names are used at runtime by both the stub and dynamic interfaces. As a
result, all operations that might apply to a particular object must have unique
names. This requirement prohibits redefining an operation name in a derived inter-
face, as well as inheriting two operations with the same name.

Constant Declarations
This section describes the syntax for constant declarations.

Syntax
The syntax for a constant declaration is:

<const_dcl> ::= “const” <const_type> <identifier> “=”
<const_exp>

<const_type> ::= <integer_type>
| <char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <scoped_name>

<const_exp> ::= <or_expr>

<or_expr> ::= <xor_expr>
| <or_expr> “|” <xor_expr>

<xor_expr> ::= <and_expr>
| <xor_expr> “̂ ” <and_expr>

<and_expr> ::= <shift_expr>
| <and_expr> “&” <shift_expr>

<shift_expr> ::= <add_expr>
IDL Syntax and Semantics 18-25

Constant Declarations
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

<add_expr> ::= <mult_expr>
| <add_expr> “+” <mult_expr>
| <add_expr> “-” <mult_expr>

<mult_expr> ::= <unary_expr>
| <mult_expr> “*” <unary_expr>
| <mult_expr> “/” <unary_expr>
| <mult_expr> “%” <unary_expr>

<unary_expr> ::= <unary_operator> <primary_expr>
| <primary_expr>

<unary_operator> ::= “-”
| “+”
| “~”

<primary_expr> ::= <scoped_name>
| <literal>
| “(” <const_exp> “)”

<literal> ::= <integer_literal>
| <string_literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal> ::= “TRUE”
| “FALSE”

<positive_int_const>::= <const_exp>

For example, the following declares a constant value of <const_type> ub4, <identi-
fier> of err_max with a value of 10.

const ub4 err_max = 10;

Semantics
The <scoped_name> in the <const_type> production must be a previously defined
name of an <integer_type>, <char_type>, <wide_char_type>, <boolean_type>,
<floating_pt_type>, <fixed_pt_const_type>, <string_type>, or
<wide_string_type>.

<positive_int_const> must evaluate to a positive integer constant.
18-26 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Constant Declarations
An infix operator, such as “+”, “-”, can combine two integers, floats, or fixeds. It
cannot combine a mixture of these types. Infix operators are applicable only to inte-
ger, float, and fixed types. For example, you can add together 4.0 and 3.125; you
cannot add together 4 and 3.125 because their types are mixed.

Constant data types
A constant is declared with a data type. Sometimes the data type declared is not
appropriate for constant values. The following table shows how some data types
are translated to a more appropriate data type for a constant value:

Fixed point decimal constant expressions A fixed-point literal has the apparent number
of total and franctional digits, except that leading and trailing zeros are factored
out, including non-significant zeros before the decimal point. For example,
0123.450d is considered to be fixed<5,2> and 3000.00 is fixed <1,3>. Prefix operators
do not affect eh precision; a prefix + is optional, and does not change the result. The
upper bounds on the number of digits and scale of the result of an infix expression,
fixed<d1,s1> op fixed<d2,s2>, are shown in the following table.

Data type declared for the constant Data type that it is translated to

long or unsigned long unsigned long

signed long for negative constants signed long

long long or unsigned long long unsigned long long

signed long long signed long long

double for floating point constant double

long double for floating point constant long double

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2,s1+s2>

/ fixed<(d1-s1+s2) + sinf,sinf>
IDL Syntax and Semantics 18-27

Constant Declarations
Unary and Binary Operators
The following table describes where unary and binary operators are applicable:

The ~ unary operator The “~” unary operator indicates that the bit-complement of the
expression to which it is applied should be generated. For the purposes of such
expressions, the values are 2’s complement numbers. As such, the complement can
be generated as follows:

The % binary operator The “%” binary operator yields the remainder from the divi-
sion of the first expression by the second. If the second operand of “%” is 0, the
result is undefined; otherwise:

(a/b)*b + a%b

is equal to a. If both operands are non-negative, then the remainder is non-nega-
tive; if not, the sign of the remainder is implementation dependent.

Bitwise binary operators The following table describes the functionality for the bit-
wise binary operators:

Unary operators Binary operators Applicable in the following expressions

+ – * / + – floating-point expressions

+ – ~ * / % + – << >> & | ^ integer expressions

Integer constant expression type Generated 2’s complement numbers

long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value

bitwise binary operator Functionality

<< Indicates that the value of the left operand should be
shifted left the number of bits specified by the right oper-
and, with 0 fill for the vacated bits. The right operand
must be in the range 0 <= right operand < 64.
18-28 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Type Declaration
Type Declaration
IDL provides constructs for naming data types; that is, it provides C language-like
declarations that associate an identifier with a type. IDL uses the typedef keyword
to associate a name with a data type; a name is also associated with a data type via
the struct, union, enum and native declarations; the syntax is:

<type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
| "native" <simple_declarator>

<type_declarator> ::= <type_spec> <declarators>
For type declarations, IDL defines a set of type specifiers to represent typed values.
The syntax is as follows:

<type_spec> ::= <simple_type_spec>
| <constr_type_spec>

<simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_name>

<base_type_spec> ::= <floating_pt_type>
| <integer_type> interface
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>

<template_type_spec>::= <sequence_type>

>> Indicates that the value of the left operand should be
shifted right the number of bits specified by the right
operand, with 0 fill for the vacated bits. The right oper-
and must be in the range 0 <= right operand < 64

& Indicates that the logical, bitwise AND of the left and
right operands should be generated.

| Indicates that the logical, bitwise OR of the left and right
operands should be generated.

^ Indicates that the logical, bitwise EXCLUSIVE-OR of the
left and right operands should be generated.

bitwise binary operator Functionality
IDL Syntax and Semantics 18-29

Type Declaration
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<declarators> ::= <declarator> { “,” <declarator> } *

<declarator> ::= <simple_declarator>
| <complex_declarator>

<simple_declarator> ::= <identifier>

<complex_declarator>::= <array_declarator>

The <scoped_name> in <simple_type_spec> must be a previously defined type.

As seen above, IDL type specifiers consist of scalar data types and type construc-
tors. IDL type specifiers can be used in operation declarations to assign data types
to operation parameters. The next sections describe basic and constructed type
specifiers.

Basic Types
The syntax for the basic types is:

<floating_pt_type> ::= “float”
| “double”
| “long”“double”

<integer_type> ::= <signed_int>
| <unsigned_int>

<signed_int> ::= <signed_long_int>
| <signed_longlong_int>
| <signed_short_int>

<signed_long_int> ::= “long”
<signed_longlong_int> ::=“long”“long”
<signed_short_int> ::= “short”

<unsigned_int> ::= <unsigned_long_int>
| <unsigned_longlong_int>
| <unsigned_short_int>
18-30 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Type Declaration
<unsigned_long_int> ::= “unsigned” “long”
<unsigned_longlong_int> ::=“unsigned”“long”“long”
<unsigned_short_int>::= “unsigned” “short”

<char_type> ::= “char”
<wide_char_type> ::= “wchar”

<boolean_type> ::= “boolean”

<octet_type> ::= “octet”

<any_type> ::= “any”

Each IDL data type is mapped to a native data type via the appropriate language
mapping. Conversion errors between IDL data types and the native types to which
they are mapped can occur during the performance of an operation invocation. The
invocation mechanism (client stub, dynamic invocation engine, and skeletons) may
signal an exception condition to the client if an attempt is made to convert an ille-
gal value. The standard exceptions which are to be signalled in such situations are
defined in “Standard Exceptions” on page 18-48.

Integer Types
IDL supports short, unsigned short, long, unsigned long, long long and unsigned
long long integer data types:

Floating-Point Types
IDL floating-point types are as follows:

■ float - represents IEEE single precision floating point numbers

■ double - represents IEEE double precision floating point numbers

short Represents the range -215 .. 215 - 1

long Represents the range -231 .. 231 - 1

long long Represents the range -263 .. 263 - 1

unsigned short Represents the range 0 .. 216 - 1

unsigned long Represents the range 0 .. 232 - 1

unsigned long long Represents the range 0 .. 264 - 1
IDL Syntax and Semantics 18-31

Type Declaration
■ long double - represents IEEE double-extended floating point numbers, which
have an exponent of at least 15 bits in length and a signed fraction of at least 64
bits

See IEEE Standard for Binary Floating Point Arithmetic, ANSI/IEEE Standard 754-
1985, for a detailed specification.

Char Type
IDL defines a char data type consisting of 8-bit quantities, which may do one of the
following:

1. encodes a single-byte character from any byte-oriented code set

2. encodes a multi-byte character from a multi-byte code set when the character is
used within an array

Any implementation is free to use any code set internally for encoding character
data, though conversion to another form may be required for transmission.

The ISO Latin-1 (8859.1) character set standard defines the meaning and representa-
tion of all possible graphic characters (for example, the space, alphabetic, digit and
graphic characters defined in Table 18–1 through Table 18–3). The meaning and rep-
resentation of the null and formatting characters (see Table 18–4) is the numerical
value of the character as defined in the ASCII (ISO 646) standard. The meaning of
all other characters is implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the repre-
sentation of a character but maintain the character’s meaning. For example, a char-
acter may be converted to and from the appropriate representation in international
character sets.

Wide Char Type
IDL defines a wchar data type that encodes wide characters from any character set.
An implementation is free to use any code set internally for encoding wide charac-
ters, though conversion to another form may be required for transmission. The size
of wchar is implementation-dependent.

Boolean Type
The boolean data type is used to denote a data item that can only take one of the
values, TRUE and FALSE.
18-32 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Type Declaration
Octet Type
The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion
when transmitted by the communication system.

Any Type
The any type permits the specification of values that can express any IDL type.

Constructed Types
The constructed types are:

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

Although it is syntactically possible to generate recursive type specifications in
IDL, such recursion is semantically constrained. The only permissible form of recur-
sive type specification is through the use of the sequence template type.

The Oracle ORB IDL compiler only allows recursion at the top level of a structure.
For example, it is legal to do:

struct foo
{

long value;
sequence<foo> chain;

};

but illegal to do:

struct foo
{

struct bar
{

sequence<foo> chain;
} f1;

};

It is also illegal to express a recursive sequence in complex member declarations,
such as arrays or sequences of sequences:

struct foo
{

sequence<foo> f1; // OK
sequence<sequence<foo>> f2; // not supported
IDL Syntax and Semantics 18-33

Type Declaration
sequence<foo> f3[5]; // not supported
};

See “Sequences” on page 18-36 for details of the sequence template type.

Structures
The structure syntax is:

<struct_type> ::= “struct” <identifier> “{” <member_list> “}”

<member_list> ::= <member>+

<member> ::= <type_spec> <declarators> “;”

The <identifier> in <struct_type> defines a new legal type. Structure types may
also be named using a typedef declaration.

Name scoping rules require that the member declarators in a particular structure be
unique. The value of a struct is the value of all of its members.

Discriminated Unions
The discriminated union syntax is:

<union_type> ::= “union” <identifier> “switch” “(”
 <switch_type_spec> “)” “{” <switch_body> “}”

<switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_name>

<switch_body> ::= <case>+

<case> ::= <case_label>+ <element_spec> “;”

<case_label> ::= “case” <const_exp> “:”
| “default” “:”

<element_spec> ::= <type_spec> <declarator>

IDL unions are a cross between the C union and switch statements. IDL unions
must be discriminated; that is, the union header must specify a typed tag field that
determines which union member to use for the current instance of a call. The <iden-
tifier> following the union keyword defines a new legal type. Union types may
18-34 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Type Declaration
also be named using a typedef declaration. The <const_exp> in a <case_label>
must be consistent with the <switch_type_spec>. A default case can appear at most
once. The <scoped_name> in the <switch_type_spec> production must be a previ-
ously defined integer, char, boolean or enum type.

Case labels must match or be automatically castable to the defined type of the dis-
criminator. The complete set of matching rules is shown in Table 18–8.

Name scoping rules require that the element declarators in a particular union be
unique. If the <switch_type_spec> is an <enum_type>, the identifier for the enu-
meration is in the scope of the union; as a result, it must be distinct from the ele-
ment declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body>. The value of a union is the value of the discriminator along with a
possible other value in one of the following combinations:

■ If the discriminator value was explicitly listed in a case statement, the value of
a union is the value of the discriminator with the value of the element associ-
ated with the case statement.

■ If a default case label was specified, the value of a union is the value of the dis-
criminator with the value of the element associated with the default case label.

Table 18–8 Case Label Matching

Discriminator
Type Matched By

long Any integer value in the value range of long

long long Any integer value in the value range of long long

short Any integer value in the value range of short

unsigned long Any integer value in the value range of unsigned long

unsigned long long Any integer value in the value range of unsigned long long

unsigned short Any integer value in the value range of unsigned short

char char

wchar wchar

boolean TRUE or FALSE

enum Any enumerator for the discriminator enum type
IDL Syntax and Semantics 18-35

Type Declaration
■ The value of a union is the value of the discriminator with no additional value.

Access to the discriminator and the related element is language-mapping depen-
dent.

Enumerations
Enumerated types consist of ordered lists of identifiers. The syntax is:

<enum_type> ::= “enum” <identifier> “{” <enumerator> { “,”
<enumerator> } * “}”

<enumerator> ::= <identifier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the enu-
merated names must be mapped to a native data type capable of representing a
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any lan-
guage mapping which permits two enumerators to be compared or defines succes-
sor/predecessor functions on enumerators must conform to this ordering relation.
The <identifier> following the enum keyword defines a new legal type. Enumer-
ated types may also be named using a typedef declaration.

Template Types
The template types are:

<template_type_spec>::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

Sequences
A sequence is a one-dimensional array with two characteristics: a maximum size
(which is fixed at compile time), and a length (which is determined at run time).

The syntax is:

<sequence_type> ::= “sequence” “<” <simple_type_spec> “,”
 <positive_int_const> “>”

| “sequence” “<” <simple_type_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If a positive integer constant is specified for the maximum size, the
sequence is termed a bounded sequence. Prior to passing a bounded sequence as a
18-36 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Type Declaration
function argument (or as a field in a structure or union), the length of the sequence
must be set in a language-mapping dependent manner. After receiving a sequence
result from an operation invocation, the length of the returned sequence will have
been set; this value may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded).
Prior to passing such a sequence as a function argument (or as a field in a structure
or union), the length of the sequence, the maximum size of the sequence, and the
address of a buffer to hold the sequence must be set in a language-mapping depen-
dent manner. After receiving such a sequence result from an operation invocation,
the length of the returned sequence will have been set; this value may be obtained
in a language-mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For
example, the following:

typedef sequence< sequence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long”.
Note that for nested sequence declarations, a space must be used to separate the
two “>” tokens ending the declaration so they are not parsed as a single “>>” token.

Strings
IDL defines the string type string consisting of all possible 8-bit quantities except
null. A string is similar to a sequence of char. As with sequences of any type, prior
to passing a string as a function argument (or as a field in a structure or union), the
length of the string must be set in a language-mapping dependent manner. The syn-
tax is:

<string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

The argument to the string declaration is the maximum size of the string. If a posi-
tive integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special
built-in functions or standard library functions for string manipulation. A separate
string type may permit substantial optimization in the handling of strings com-
pared to what can be done with sequences of general types.
IDL Syntax and Semantics 18-37

Type Declaration
Wide Char String Type
The wstring data type represents a null-terminated (a wide character null)
sequence of wchar. Type wstring is analogous to string, except that its element type
is wchar instead of char.

Fixed Type
The fixed data type represents a fixed-point decimal number of up to 31 significant
digits. The scale factor is normally a non-negative integer less than or equal to the
total number of digits. Constants with an effectively negative scale, such as 10000,
are always permittted. However, some languages and environments may be able to
accommodate types that have a negative scale or a scale greater than the number of
digits.

Complex Declarator

Arrays
IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes for
each dimension.

The syntax for arrays is:

<array_declarator> ::= <identifier> <fixed_array_size>+
<fixed_array_size> ::= “[” <positive_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is
passed as a parameter in an operation invocation, all elements of the array are
transmitted.

The implementation of array indices is language mapping specific; passing an
array index as a parameter may yield incorrect results.

Native Types
IDL provides a declaration for use by object adapters to define an opaque type
whose representation is specified by the language mapping for that object adapter.

The syntax is:

<type_dcl> ::= "native" <simple_declarator>
<simple_declarator> ::= <identifier>
18-38 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Exception Declaration
This declaration defines a new type with the specified name. A native type is simi-
lar to an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how
the native type is mapped into that programming language.

A native type may be used to define operatoin parameters and results. However,
there is no requirement that values of the type be permitted in remote invocations,
either directly or as a component of a constructed type. Any attempt to transmit a
vlaue of a native type in a remote invocation may raise the MARSHAL standard
exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to thenormal mapping rules for type names in that
language. For example, in a hypothetical Object Adapter IDL module:

module HypotheticalObjectAdapter {
native Servant;
interface HOA {

Object activate_object(in Servant x);
};

};
the IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++
and the activaet_object operation would map to the following C++ member func-
tion signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ type HypotheticalObjectAdapter::Servant would be pro-
vided as part of the C++ mapping for the HypotheticalObjectAdapter module.

The native type declaration is provided specifically for use in object adapter inter-
faces, which require parameters whose values are concrete representations of object
implementation instances. It is strongly recommended that it not be used in service
or application interfaces. The native type declaration allows object adapters to
define new primitive types without requiring changes to the IDL language.

Exception Declaration
Exception declarations permit the declaration of struct-like data structures which
may be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

<except_dcl> ::= “exception” <identifier> “{“ <member>* “}”
IDL Syntax and Semantics 18-39

Operation Declaration
Each exception is characterized by its IDL identifier, an exception type identifier,
and the type of the associated return value (as specified by the <member>s in its
declaration. If an exception is returned as the outcome to a request, then the value
of the exception identifier is accessible to the programmer for determining which
particular exception was raised.

If an exception is declared with members, a programmer will be able to access the
values of those members when an exception is raised. If no members are specified,
no additional information is accessible when an exception is raised.

A set of standard exceptions is defined corresponding to standard runtime errors
which may occur during the execution of a request. These standard exceptions are
documented in “Standard Exceptions” on page 18-48.

Operation Declaration
Operation declarations in IDL are similar to C function declarations. The syntax is:

<op_dcl> ::= [<op_attribute>] <op_type_spec> <identifier>
<parameter_dcls> [<raises_expr>]

[<context_expr>]
<op_type_spec> ::= <param_type_spec>

| “void”
An operation declaration consists of:

■ An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Opera-
tion attributes are described in ”“Operation Attribute” on page 18-41” below.

■ The type of the operation’s return result; the type may be any type which can
be defined in IDL. Operations that do not return a result must specify the void
type.

■ An identifier that names the operation in the scope of the interface in which it
is defined.

■ A parameter list that specifies zero or more parameter declarations for the oper-
ation. Parameter declaration is described in “Parameter Declarations” on page
18-41.

■ An optional raises expression which indicates which exceptions may be raised
as a result of an invocation of this operation. Raises expressions are described
in “Raises Expressions” on page 18-42.
18-40 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Operation Declaration
■ An optional context expression which indicates which elements of the request
context may be consulted by the method that implements the operation. Con-
text expressions are described in “Context Expressions” on page 18-42.

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

Operation Attribute
The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation
attribute is optional. The syntax for its specification is as follows:

<op_attribute> ::= “oneway”

When a client invokes an operation with the oneway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effort
implies that the operation will be invoked at most once. An operation with the
oneway attribute must not contain any output parameters and must specify a void
return type. An operation defined with the oneway attribute may not include a
raises expression; invocation of such an operation, however, may raise a standard
exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation
returns successfully.

Parameter Declarations
Parameter declarations in IDL operation declarations have the following syntax:

<parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> } * “)”
| “(” “)”

<param_dcl> ::= <param_attribute> <param_type_spec>
<simple_declarator>

<param_attribute> ::= “in”
| “out”
| “inout”

<param_type_spec> ::= <base_type_spec>
| <string_type>
| <scoped_name>
IDL Syntax and Semantics 18-41

Operation Declaration
A parameter declaration must have a directional attribute that informs the commu-
nication service in both the client and the server of the direction in which the
parameter is to be passed. The directional attributes are:

■ in - the parameter is passed from client to server

■ out - the parameter is passed from server to client

■ inout - the parameter is passed in both directions

It is expected that an implementation will not attempt to modify an in parameter.
The ability to even attempt to do so is language-mapping specific; the effect of such
an action is undefined.

If an exception is raised as a result of an invocation, the values of the return result
and any out and inout parameters are undefined.

When an unbounded string or sequence is passed as an inout parameter, the
returned value cannot be longer than the input value.

Raises Expressions
A raises expression specifies which exceptions may be raised as a result of an invo-
cation of the operation. The syntax for its specification is as follows:

<raises_expr> ::= “raises” “(” <scoped_name>
{ “,” <scoped_name> } * “)”

The <scoped_name>s in the raises expression must be previously defined excep-
tions. Only the operation-specific exceptions listed in the raises expression may be
thrown back to the client. Any operation-specific exception not listed in the raises
expression that is thrown back to the client is mapped to CORBA::UNKNOWN.

In addition to any operation-specific exceptions specified in the raises expression,
there are a standard set of exceptions that may be signalled by the ORB. These stan-
dard exceptions are described in “Standard Exceptions” on page 18-48. However,
standard exceptions may not be listed in a raises expression.

The absence of a raises expression on an operation implies that there are no opera-
tion-specific exceptions. Invocations of such an operation are still liable to receive
one of the standard exceptions.

Context Expressions
A context expression specifies which elements of the client’s context may affect the
performance of a request by the object. The syntax for its specification is:
18-42 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Attribute Declaration
<context_expr> ::= “context” “(” <string_literal>
{ “,” <string_literal> } * “)”

The runtime system guarantees to make the value associated with each
<string_literal> in the client’s context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request context during request resolution and performance.

The absence of a context expression indicates that there is no request context associ-
ated with requests for this operation.

Each string-literal is an arbitrarily long sequence of alphabetic, digit, period (“.”),
underscore (“_”), and asterisk (“*”) characters. The first character of the string must
be an alphabetic character. An asterisk may only be used as the last character of the
string. Some implementations may use the period character to partition the name
space.

Attribute Declaration
An interface can have attributes as well as operations; as such, attributes are
defined as part of an interface. An attribute definition is logically equivalent to
declaring a pair of accessor functions; one to retrieve the value of the attribute and
one to set the value of the attribute.

The syntax for attribute declaration is:

<attr_dcl> ::= [“readonly”] “attribute”
<param_type_spec> <simple_declarator>
{ “,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor func-
tion—the retrieve value function. Consider the following example:

interface foo {
enum material_t {rubber, glass};
struct position_t {

float x, y;
};

attribute float radius;
attribute material_t material;
readonly attribute position_t position;
• • • };

The attribute declarations are equivalent to the following pseudo-specification frag-
ment:
IDL Syntax and Semantics 18-43

CORBA Module
• • •
float _get_radius ();
void _set_radius (in float r);
material_t _get_material ();
void _set _material (in material_t m);
position_t _get_position ();
• • •
The actual accessor function names are language-mapping specific; the Java map-
pings are described in “CORBA Pseudo-Object API for Java Clients” on page 19-28.
The attribute name is subject to IDL’s name scoping rules; the accessor function
names are guaranteed not to collide with any legal operation names specifiable in
IDL.

Attribute operations return errors by means of standard exceptions.

Attributes are inherited. An attribute name cannot be redefined to be a different
type. See “CORBA Module” on page 18-44 for more information on redefinition
constraints and the handling of ambiguity.

CORBA Module
In order to prevent names defined within the CORBA specification from clashing
with names in programming languages and other software systems, all names
defined by CORBA are treated as if they were defined within a module named
CORBA. Within an IDL specification, however, IDL keywords such as Object must
not be preceded by a CORBA:: prefix. Other interface names such as TypeCode are
not IDL keywords and so must be referred to by their fully scoped names (for exam-
ple, CORBA::TypeCode) within an IDL specification.

Names and Scoping
An entire IDL file forms a naming scope. In addition, the following kinds of defini-
tions form nested scopes:

■ module

■ interface

■ structure

■ union

■ operation

■ exception
18-44 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Names and Scoping
Identifiers for the following kinds of definitions are scoped:

■ types

■ constants

■ enumeration values

■ exceptions

■ interfaces

■ attributes

■ operations

An identifier can only be defined once in a scope. However, identifiers can be rede-
fined in nested scopes. An identifier declaring a module is considered to be defined
by its first occurrence in a scope. Subsequent occurrences of a module declaration
within the same scope reopen the module allowing additional definitions to be
added to it.

Due to possible restrictions imposed by future language bindings, IDL identifiers
are case-insensitive; that is, two identifiers that differ only in the case of their char-
acters are considered redefinitions of one another. However, all references to a defi-
nition must use the same case as the defining occurrence. (This allows natural
mappings to case-sensitive languages.)

Type names defined in a scope are available for immediate use within that scope. In
particular, see “Constructed Types” on page 18-33 on cycles in type definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes. Once an unquali-
fied name is used in a scope, it cannot be redefined—for example, if you have used
a name defined in an enclosing scope in the current scope, you cannot then redefine
a version of the name in the current scope. Such redefinitions yield a compilation
error.

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by
first resolving the qualifier <scoped-name> to a scope S, and then locating the defi-
nition of <identifier> within S. The identifier must be directly defined in S or (if S
is an interface) inherited into S. The <identifier> is not searched for in enclosing
scopes.

When a qualified name begins with “::”, the resolution process starts with the small-
est enclosing module, and locates subsequent identifiers in the qualified name by
the rule described in the previous paragraph.
IDL Syntax and Semantics 18-45

Names and Scoping
Every IDL definition in a file has a global name within that file. The global name
for a definition is constructed as follows.

Prior to starting to scan a file containing an IDL specification, the name of the cur-
rent root is initially empty (“”) and the name of the current scope is initially empty
(“”). Whenever a module keyword is encountered, the string “::” and the associ-
ated identifier are appended to the name of the current root; upon detection of the
termination of the module, the trailing “::” and identifier are deleted from the name
of the current root. Whenever an interface, struct, union, or exception keyword is
encountered, the string “::” and the associated identifier are appended to the name
of the current scope; upon detection of the termination of the interface, struct,
union, or exception, the trailing “::” and identifier are deleted from the name of the
current scope. Additionally, a new, unnamed, scope is entered when the parameters
of an operation declaration are processed; this allows the parameter names to dupli-
cate other identifiers; when parameter processing has completed, the unnamed
scope is exited.

The global name of an IDL definition is the concatenation of the current root, the
current scope, a “::”, and the <identifier> which is the local name for that definition.

Inherited Names
Inheritance produces shadow copies of the inherited identifiers— for example, it
introduces names into the derived interface, but these names are considered to be
semantically “the same” as the original definition. Two shadow copies of the same
original (as results from the diamond shape in Figure 18–1) introduce a single name
into the derived interface and don’t conflict with each other.

Inheritance introduces multiple global IDL names for the inherited identifiers. Con-
sider the following example:

interface A {
exception E {

long L;
};
void f() raises(E);

};

interface B: A {
void g() raises(E);

};

In the above example, the exception is known by the global names ::A::E and ::B::E.

Ambiguity can arise in specifications due to the nested naming scopes. For example:
18-46 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Names and Scoping
interface A {
typedef string<128> string_t;

};

interface B {
typedef string<256> string_t;

};
interface C: A, B {

attribute string_t Title; /* AMBIGUOUS!!! */
};

Ambiguous declarations yield compilation errors.

Nested Types
The IDL grammar permits structs and unions to be defined inside other struct,
union, and exception declarations. When the Oracle ORB IDL compiler encounters
nested types, it applies the following “rewriting” rule:

A type defined inside a struct, union, or exception is treated as if it were
defined in the innermost enclosing interface or module scope. If no
enclosing interface or module scope exists, the type is defined at file
scope. The nested declaration is further treated as if it occurs before the
enclosing type declaration.

Applying the rewriting rule, the declaration:

struct outer
{

struct inner
{

struct innermost
{

long num;
} infield;

} outfield;
};

is equivalent to:
struct innermost
{

long num;
};
struct inner
{

IDL Syntax and Semantics 18-47

Standard Exceptions
innermost infield;
};
struct outer
{

inner outfield;
};
Note the implications this has for recursive types:

struct foo
{

struct bar
{

sequence<foo> chain;
} f1;

};

If the rewriting rule is applied, we get:

struct bar
{

sequence<foo> chain;
};
struct foo
{

bar f1;
};

Notice that the resulting declaration of <bar> is now illegal because <foo> had not
been introduced when <bar> is declared. This effectively prohibits recursion in
nested types.

Standard Exceptions
This section presents the standard exceptions defined for the ORB. These exception
identifiers may be returned as a result of any operation invocation, regardless of
the interface specification. Standard exceptions may not be listed in raises expres-
sions.

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the def-
inition of equivalence classes of exceptions rather than enumerating many similar
exceptions. For example, an operation invocation can fail at many different points
due to the inability to allocate dynamic memory. Rather than enumerate several dif-
ferent exceptions corresponding to the different ways that memory allocation fail-
ure causes the exception (during marshalling, unmarshalling, in the client, in the
18-48 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Standard Exceptions
object implementation, allocating network packets, ...), a single exception corre-
sponding to dynamic memory allocation failure is defined. Each standard excep-
tion includes a minor code to designate the subcategory of the exception; the
assignment of values to the minor codes is left to each ORB implementation.

Each standard exception also includes a completion_status code which takes one
of the following values:

■ COMPLETED_YES - the object implementation has completed processing
prior to the exception being raised

■ COMPLETED_NO - the object implementation was never initiated prior to the
exception being raised

■ COMPLETED_MAYBE - the status of implementation completion is indetermi-
nate

The standard exceptions are defined below. Clients must be prepared to handle sys-
tem exceptions that are not on this list, both because future versions of this specifi-
cation may define additional standard exceptions, and because ORB
implementations may raise non-standard system exceptions.

#define ex_body {unsigned long minor; completion_status completed;}
enum completion_status {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE};
enum exception_type {NO_EXCEPTION, USER_EXCEPTION, SYSTEM_EXCEPTION};
exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; // an invalid parameter was passed
exception NO_MEMORY ex_body; // dynamic memory allocation failure
exception IMP_LIMIT ex_body; // violated implementation limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // invalid object reference
exception NO_PERMISSION ex_body; // no permission for attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; // error marshalling param/result
exception INITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // operation implementation unavailable
exception BAD_TYPECODE ex_body; // bad typecode
exception BAD_OPERATION ex_body; // invalid operation
exception NO_RESOURCES ex_body; // insufficient resources for req.
exception NO_RESPONSE ex_body; // response to req. not yet available
exception PERSIST_STORE ex_body; // persistent storage failure
exception BAD_INV_ORDER ex_body; // routine invocations out of order
exception TRANSIENT ex_body; // transient failure - reissue request
exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // invalid identifier syntax
exception INV_FLAG ex_body; // invalid flag was specified
IDL Syntax and Semantics 18-49

Standard Exceptions
exception INTF_REPOS ex_body; // error accessing interface repository
exception BAD_CONTEXT ex_body; // error processing context object
exception OBJ_ADAPTER ex_body; // failure detected by object adapter
exception DATA_CONVERSION ex_body; // data conversion error
exception OBJECT_NOT_EXIST ex_body; // non-existent object; delete reference
exception TRANSACTION_REQUIRED ex_body; // transaction required
exception TRANSACTION_ROLLEDBACK ex_body; // transaction rolled back
exception INVALID_TRANSACTION ex_body; // invalid transaction

The Object Non-Existence exception, OBJECT_NOT_EXIST, is raised whenever an
invocation on a deleted object was performed. It is an authoritative “hard” fault
report. Anyone receiving it is allowed (even expected) to delete all copies of this
object reference and to perform other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may
hold (for example, proxy objects used in reference translation). The clients could in
turn purge any of their own data structures.

The TRANSACTION_REQUIRED exception indicates that the request carried a
null transaction context, but an active transaction is required.

The TRANSACTION_ROLLEDBACK exception indicates that the transaction asso-
ciated with the request has already been rolled back or marked to roll back. Thus,
the requested operation either could not be performed or was not performed
because further coputation on behalf of the transaction would be fruitless.

The INVALID_TRANSACTION exception indicates that the request carried an
invalid transaction context. For example, this context could be raised if an error
occurred when trying to register a resource.
18-50 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

IDL-to-Java Language M
19

IDL-to-Java Language Mapping

This chapter contains the ORB reference material. The reference material consists of
the following:

■ Using the IDL/Java Language Mappings

■ CORBA Pseudo-Object API for Java Clients

Using the IDL/Java Language Mappings
This section describes the how the oasoidlc tools maps your CORBA IDL file to
Java. See Chapter 3 of OMG’s CORBA 2.2 specification for IDL syntax.

The ORB supports all of the IDL types. In addition, the application server’s ORB
has defined some extensions, described in Chapter 17, “Accessing CORBA Objects
from Java” and listed in “ORB” on page 19-40.

The oasoidlc compiler generates Java code from a user-defined IDL file. The com-
piler generates the Java code as described in this appendix. The oasoidlc compiler
output conforms to the OMG IDL/Java Language Mapping Specification.

Note: Information in this section was extracted from Chapter 24,
Mapping of OMG IDL to Java, of OMG’s CORBA 2.2 specification
document. Where similarities exist in code and descriptions of
mappings between OMG’s specification document and this man-
ual, the code or descriptions are copyright of the Object Manage-
ment Group.
apping 19-1

Using the IDL/Java Language Mappings
This appendix discusses the following subjects:

■ Summary of IDL-to-Java Mappings

■ Data Type Mappings

Summary of IDL-to-Java Mappings
The following tables provide a summary of the IDL-to-Java mappings. The detail
for each of these items is provided in the rest of the appendix.

Names Enumerated Types Exceptions

Reserved Names Structures The IDL Any Type

Modules Unions Arrays

Basic Types Sequences Types Nested Within
InterfacesHelper Classes Holder Classes

Constants Interfaces

Table 19–1 General Constructs

IDL Java

module package

user exceptions Java class that extends org.omg.CORBA.UserException.

system exceptions org.omg.CORBA.SystemException

in parameters normal Java parameters

out and inout parameters Java Holder classes

typecasting or narrow Java Helper classes

attributes Java overloaded accessor and modifier methods with the same
name as the attribute

Table 19–2 Primitive Types

IDL Java

const public static final field

boolean, TRUE, FALSE boolean, true, false

char, wchar char
19-2 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
octet byte

string, wstring java.lang.String

short, unsigned short short

long, unsigned long int

long long, unsigned long long long

float float

double double

Table 19–3 Constructed types

IDL Java

interface interface

sequence array

array array

struct Java class with same name as struct type including variables
and constructors for the fields.

enum Java class with the same name as the enum type

union Java class with the same name as the union type with get and
set methods for the fields.

typedef No typedef in Java.

any org.omg.CORBA.Any

Table 19–4 Server-side Mapping

IDL Java

CORBA server implemen-
tation

The implementation class extends the IDL-generated
<interface>ImplBase class.

non-CORBA server imple-
mentation

Use the _tie_<interface> class generated by the IDL compiler.

Table 19–2 Primitive Types

IDL Java
IDL-to-Java Language Mapping 19-3

Using the IDL/Java Language Mappings
Names
In general, IDL names and identifiers are mapped to Java names and identifiers
with no change. If a name collision could be generated in the mapped Java code,
the name collision is resolved by prepending an underscore (_) to the mapped
name.

In addition, because of the nature of the Java language, a single IDL construct may
be mapped to several (differently named) Java constructs. The "additional" names
are constructed by appending a descriptive suffix. For example, the IDL interface
foo is mapped to the Java interface foo, and additional Java classes fooHelper and
fooHolder.

In those exceptional cases that the "additional" names could conflict with other
mapped IDL names, the resolution rule described above is applied to the other
mapped IDL names (i.e., the naming and use of required "additional" names takes
precedence).

Reserved Names
The mapping in effect reserves the use of several names for its own purposes.
These are:

■ The Java class <type>Helper, where <type> is the name of IDL user defined
type.

■ The Java class <type>Holder, where <type> is the name of an IDL defined type
(with certain exceptions such as typedef aliases).

■ The Java classes <basicJavaType>Holder, where <basicJavaType> is one of the
Java primitive datatypes that is used by one of the IDL basic datatypes.

■ The nested scope Java package name <interface>Package, where <interface> is
the name of an IDL interface.

■ The keywords of the Java language:

abstract default if private throw

boolean do implements protected throws

break double import public transient

byte else instanceof return try

case extends int short void

catch final interface static volatile
19-4 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
Modules
IDL modules are mapped to Java packages. The name of each Java package is the
name of its corresponding IDL module. Type declarations in IDL modules are
mapped to Java classes or interface declarations inside generated packages. IDL
declarations which are not enclosed within modules are mapped into the global
scope of Java.

IDL
module finance {

interface cash {
...
};

};

Java
package finance;

public interface cash {
...

}

Basic Types
The mappings of IDL basic types to Java are summarized in the following table.
Note that mismatches can occur in some cases. If that happens, standard CORBA
exceptions may be raised. These are explained, where applicable, in the Description
column in the table.

char finally long super while

class float native switch

const for new synchronized

continue goto package this

Table 19–5 IDL-to-Java basic type mappings

IDL Type Java Type Description

boolean boolean IDL boolean constants TRUE and FALSE are
mapped to Java literals true and false .
IDL-to-Java Language Mapping 19-5

Using the IDL/Java Language Mappings
char char IDL characters are 8-bit quantities representing
elements of a character set. Java characters are
16-bit unsigned quantities representing
Unicode characters. To enforce type-safety, the
Java CORBA runtime asserts range validity of
all IDL to Java char mapping when
parameters are marshaled during method
invocation. If the char falls outside the range
defined by the character set, a
CORBA::DATA_CONVERSION exception is
thrown.

wchar char The above description for char mapping
applies here also.

octet byte The IDL 8-bit octet type is mapped to the
Java byte type.

string java.lang.String The IDL string type (bounded and
unbounded) is mapped to
java.lang.String . Range and bounds
checking for the characters in the string are
done at marshaling time. A
CORBA::DATA_CONVERSION exception is
raised for character range violations. A
CORBA::MARSHAL exception is raised for
bounds violations.

wstring java.lang.String The IDL wstring type (bound and
unbounded) is mapped to
java.lang.String . Bounds checking of the
string is done at marshaling time. A
CORBA::MARSHAL exception is raised for
bounds violations.

short short As defined.

unsigned short short As defined.

long int As defined.

unsigned long int As defined.

long long long As defined.

unsigned long long long As defined.

Table 19–5 IDL-to-Java basic type mappings

IDL Type Java Type Description
19-6 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
Holder Classes
Holder classes are provided to support out and inout parameter passing modes.
They are available for all the basic IDL data types in org.omg.CORBA and are gen-
erated for all named user-defined types (except typedefs).

Holder class names are constructed by appending “Holder ” to mapped Java
names. For example, a user-defined type, user_type has a Java holder class called
user_typeHolder . Note that for basic IDL types, the first letter of the Java holder
class name is capitalized, i.e. char has a holder class in Java called CharHolder .

The following lists the holder classes for the IDL basic types. These classes can be
found in the org.omg.CORBA package.

Java
package org.omg.CORBA;

final public class ShortHolder {
public short value;
public ShortHolder() {}
public ShortHolder(short initial) {

value = initial;
}

}

final public class IntHolder {
public int value;
public IntHolder() {}
public IntHolder(int initial) {

value = initial;
}

}

float float As defined.

double double As defined.

Note: There is no support for unsigned types in Java. Hence, you
need to ensure that large unsigned IDL type values are handled
correctly as negative integers.

Table 19–5 IDL-to-Java basic type mappings

IDL Type Java Type Description
IDL-to-Java Language Mapping 19-7

Using the IDL/Java Language Mappings
final public class LongHolder {
public long value;
public LongHolder() {}
public LongHolder(long initial) {

value = initial;
}

}

final public class ByteHolder {
public byte value;
public ByteHolder() {}
public ByteHolder(byte initial) {

value = initial;
}

}

final public class FloatHolder {
public float value;
public FloatHolder() {}
public FloatHolder(float initial) {

value = initial;
}

}

final public class DoubleHolder {
public double value;
public DoubleHolder() {}
public DoubleHolder(double initial) {

value = initial;
}

}

final public class CharHolder {
public char value;
public CharHolder() {}
public CharHolder(char initial) {

value = initial;
}

}

final public class BooleanHolder {
public boolean value;
public BooleanHolder() {}
19-8 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
public BooleanHolder(boolean initial) {
value = initial;

}
}

final public class StringHolder {
public java.lang.String value;
public StringHolder() {}
public StringHolder(java.lang.String initial) {

value = initial;
}

}

final public class ObjectHolder {
public org.omg.CORBA.Object value;
public ObjectHolder() {}
public ObjectHolder(org.omg.CORBA.Object initial) {

value = initial;
}

}

final public class AnyHolder {
public Any value;
public AnyHolder() {}
public AnyHolder(Any initial) {

value = initial;
}

}

final public class TypeCodeHolder {
public TypeCode value;
public typeCodeHolder() {}
public TypeCodeHolder(TypeCode initial) {

value = initial;
}

}

final public class PrincipalHolder {
public Principal value;
public PrincipalHolder() {}
public PrincipalHolder(Principal initial) {

value = initial;
}

}

IDL-to-Java Language Mapping 19-9

Using the IDL/Java Language Mappings
The Holder class for a user-defined type user_type is shown below:

Java
final public class user_typeHolder

implements org.omg.CORBA.portable.Streamable {

public user_type value;
public user_typeHolder() {}
public user_typeHolder(user_type initial) {}
public void _read(org.omg.CORBA.portable.InputStream i) {...}
public void _write(org.omg.CORBA.portable.OutputStream o) {...}
public org.omg.CORBA.TypeCode _type() {...}
}

Helper Classes
In addition to a holder class, each IDL user-defined type maps a Java helper class.
The name of a helper class is type_name Helper (the word “Helper ” appended
to the generated Java type name). Several static methods are generated that include
methods to get the repository id and typecode, reading and writing the type from
and to a stream, and the insert and extract operations of the Any type.

The following depicts a Java helper class for the user-defined type user_type .

Java
public class user_typeHelper {

public static void insert(org.omg.CORBA.Any a, user_type t) {...}
public static user_type extract(Any a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static String id() {...}
public static user_type read(org.omg.CORBA.portable.InputStream istream) {...}
public static void write(org.omg.CORBA.portable.OutputStream ostream,

user_type value) {...}

// only for interface helpers
public static user_name narrow(org.omg.CORBA.Object obj);

}

Note that the helper class for a mapped IDL interface also has a narrow() method.

Boolean
The IDL boolean constants TRUE and FALSE are mapped to the corresponding
Java boolean literals true and false.
19-10 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
Character Types
IDL characters are 8-bit quantities representing elements of a character set while
Java characters are 16-bit unsigned quantities representing Unicode characters. In
order to enforce type-safety, the Java CORBA runtime asserts range validity of all
Java chars mapped from IDL chars when parameters are marshaled during method
invocation. If the char falls outside the range defined by the character set, a
CORBA::DATA_CONVERSION exception shall be thrown.

The IDL wchar maps to the Java primitive type char.

Octet
The IDL type octet, an 8-bit quantity, is mapped to the Java type byte.

String Types
The IDL string is mapped to java.lang.String. This includes both bounded and
unbounded strings. Range and bounds checking for characters in the string are
done during marshaling.

Character range violations cause a CORBA::DATA_CONVERSION exception to be
raised. Bounds violations cause a CORBA:: MARSHAL exception to be raised.

The IDL wstring is mapped to java.lang.String. This includes both bounded and
unbounded wide strings. Bounds checking of the string shall be done at marshal-
ing. Bounds violations cause a CORBA:: MARSHAL exception to be raised.

Integer Types
The integer types map as shown in the following table:

IDL Type Java type Exceptions

short short

unsigned short short

long int

unsigned long int

long long long

unsigned long long long
IDL-to-Java Language Mapping 19-11

Using the IDL/Java Language Mappings
Floating Point Types
The IDL float and double map to Java language float and double data types.

Constants
Constants are mapped differently if defined within an IDL interface than when
defined outside the IDL interface.

■ Constants declared within an IDL interface are mapped to public static
final fields in the corresponding Java interface.

IDL
module finance {

inteface cash {
const double amount = 100.00
...

}
}

Java
package finance;

public interface cash {
public static final double amount = (double) (100.00);

}

■ Constants declared outside an IDL interface are mapped to a public inter-
face with the same name as the constant. This public interface contains
a public static field called value which is assigned the constant’s
value.

IDL
module finance {

const double amount = 100.00
...

}

Java
package finance;

public interface amount {
public static final double value = (double) (100.00);
}

19-12 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
Enumerated Types
An IDL enumerated type is mapped to a Java final class that has the same
name as the enumerated type and which declares:

■ a value method

■ two static data members per label

■ an integer conversion method

■ a private constructor

In addition to the final class , a holder class for the enumerated IDL type is also
generated. The name of this class is the name of the mapped Java classname with
Holder appended to it.

IDL
enum AccountData {a, b, c,};

Java
public final class AccountData {

public static final int _a = 0;
public static final AccountData a = new AccountData(_a);

public static final int _b = 1;
public static final AccountData b = new AccountData(_b);

public static final int _c = 2;
public static final AccountData c = new AccountData(_c);

// value methods
public int value() {....}

// integer conversion method to get enum with specified value
public static AccountData from_int(int value) {...};

// constructor
private AccountData(int) {...};

};

// holder class
IDL-to-Java Language Mapping 19-13

Using the IDL/Java Language Mappings
public class AccountDataHolder implements org.omg.CORBA.portable.Streamable {
public AccountData value;
public AccountDataHolder() {}
public AccountDataHolder(AccountData initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i) {...}
public void _write(org.omg.CORBA.portable.OutputStream o) {...}
public org.omg.CORBA.TypeCode _type() {...}

}

As shown in the above example, one of the two static data members for each
mapped IDL enum label has an underscore prefix. These members are to be used in
switch statements.

The method returns the integer value. Values are assigned sequentially starting
with 0. There is no conflict with the value() method in Java even if there is a label
named value.

The Java class for the enumerated IDL type has an additional method:
from_int() . This returns the enum with the specified value.

Structures
An IDL structure type is mapped into a final class with the same name. Fields
in the IDL members are mapped to instance variables. A constructor is generated
for all values, and a null constructor is generated for fields to be specified later.

A holder class for each IDL structure type is also generated with its name being the
mapped Java classname and Holder appended to it.

IDL
struct StructType {

long field1;
string field2;

};

Java
final public class StructType {

// instance variables
public int field1;
public String field2;
19-14 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
// constructors
public StructType() {}
public StructType(int field1, String field2) {...}

}

// holder class
final public class StructTypeHolder implements

org.omg.CORBA.portable.Streamable {
public StructType value;
public StructTypeHolder() {}
public StructTypeHolder(StructType initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i) {...}
public void _write(org.omg.CORBA.portable.OutputStream o) {...}
public org.omg.CORBA.TypeCode _type() {...}

}

Unions
An IDL union is mapped to a final Java class with the same name that has:

■ a default constructor

■ an accessor method for the discriminator, named discriminator()

■ an accessor method for each branch

The following shows how the union, UType, is converted to Java:

// IDL
union UType switch (EnumType) {

case first: long win;
case second: short place;
case third:
case fourth: octet show;
default: boolean other;

};

// generated Java
final public class UType {

// constructor
public UType() {....}

// discriminator accessor
public <switch-type> discriminator() {....}

// win
IDL-to-Java Language Mapping 19-15

Using the IDL/Java Language Mappings
public int win() {....}
public void win(int value) {....}

// place
public short place() {....}
public void place(short value) {....}

// show
public byte show() {....}
public void show(byte value) {....}
public void show(int discriminator, byte value){....}

// other
public boolean other() {....}
public void other(boolean value) {....}

}

final public class UTypeHolder implements
org.omg.CORBA.portable.Streamable {

public UType value;
public UTypeHolder() {}
public UTypeHolder(UType initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i) {...}
public void _write(org.omg.CORBA.portable.OutputStream o) {...}
public org.omg.CORBA.TypeCode _type() {...}

}

Sequences
An IDL sequence type is mapped to a Java array type with the same name. Wher-
ever the sequence type is needed, an array of the mapped type of the sequence ele-
ment is used. Bounds checking is done on bounded sequences when they are
marshaled as parameters to IDL operations. An IDL CORBA::MARSHAL is raised if
necessary.

A holder class is also generated for the sequence type. The name of this class is the
mapped Java classname of the sequence with Holder appended to it.

IDL
typedef sequence< long > UnboundedData;
typedef sequence< long, 42 > BoundedData;

Java
final public class UnboundedDataHolder implements
19-16 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
org.omg.CORBA.portable.Streamable {
public int[] value;
public UnboundedDataHolder() {};
public UnboundedDataHolder(int[] initial) {...};
public void _read(org.omg.CORBA.portable.InputStream i) {...}
public void _write(org.omg.CORBA.portable.OutputStream o) {...}
public org.omg.CORBA.TypeCode _type() {...}

}

final public class BoundedDataHolder implements
org.omg.CORBA.portable.Streamable {

public int[] value;
public BoundedDataHolder() {};
public BoundedDataHolder(int[] initial) {...};
public void _read(org.omg.CORBA.portable.InputStream i) {...}
public void _write(org.omg.CORBA.portable.OutputStream o) {...}
public org.omg.CORBA.TypeCode _type() {...}

}

Arrays
An IDL array type is mapped the same way as an IDL bounded sequence. Wher-
ever the array type is needed, an array of the mapped array element is used. In
Java, the natural Java subscripting operator is applied to the mapped array.

The bounds for the array are checked when the array is marshaled as an argument
to an IDL operation. A CORBA::MARSHAL exception is raised if a bounds violation
occurs.

The length of the array can be made available in Java, by bounding the array with
an IDL constant, which will be mapped as per the rules for constants.

A holder class is also generated for the array type. The name of this class is the
mapped Java classname of the array with Holder appended to it.

IDL
const long ArrayBound = 42;
typedef long larray[ArrayBound];

Java
final public class larrayHolder implements org.omg.CORBA.portable.Streamable {

public int[] value;
public larrayHolder() {}
public larrayHolder(int[] initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i) {...}
IDL-to-Java Language Mapping 19-17

Using the IDL/Java Language Mappings
public void _write(org.omg.CORBA.portable.OutputStream o) {...}
public org.omg.CORBA.TypeCode _type() {...}

}

Interfaces
An IDL interface type is mapped to a Java public interface of the same name.
This public interface extends the (mapped) base org.omg.CORBA.Object
interface. It also contains the mapped operation signatures. Methods can be
invoked on an object reference to this interface. There are no special "nil" object ref-
erences. Java null can be passed freely wherever an object reference is expected.

Attributes are mapped to a pair of Java accessor and modifier methods. These meth-
ods have the same name as the IDL attribute and are overloaded. There is no modi-
fier method for IDL read only attributes.

A "helper" Java class is also generated and has the same name as the IDL interface
type with Helper suffixed. This helper class holds a static narrow method that
allows a org.omg.CORBA.Object to be narrowed to the object reference of a
more specific type. The IDL exception CORBA::BAD_PARAM is raised if the narrow
fails.

The holder class for the IDL interface type is also generated. Its name is the inter-
face's mapped Java classname with Holder appended.

IDL
module Example {

interface Face {
long method (in long arg) raises (e);
attribute long assignable;
readonly attribute long nonassignable;

}
}

Java
package Example;

public interface Face extends org.omg.CORBA.Object {
int method(int arg) throws Example.e;

Note: Interface inheritance expressed in IDL is reflected directly
in the Java interface hierarchy.
19-18 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
int assignable();
void assignable(int i);
int nonassignable();

}

public class FaceHelper {

// standard helper methods
public static void insert(org.omg.CORBA.Any a, Face t) {...}
public static Face extract (Any a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static String id() {...}
public static Face read(org.omg.CORBA.portable.InputStream istream) {...}
public static void write(org.omg.CORBA.portable.OutputStream ostream, Face

value) {...}

// interface specific narrow method
public static Face narrow(org.omg.CORBA.Object obj) {...}

}

// holder class
final public class FaceHolder implements org.omg.CORBA.portable.Streamable {

public Face value;
public FaceHolder() {}
public FaceHolder(Face initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i) {...}
public void _write(org.omg.CORBA.portable.OutputStream o) {...}
public org.omg.CORBA.TypeCode _type() {...}

}

Parameter Passing Modes

IDL in parameters which implement call-by-value semantics, are mapped to nor-
mal Java actual parameters. The results of IDL operations are returned as the result
of the corresponding Java method. IDL out and inout parameters, which imple-
ment call-by-result and call-by-value/ result semantics, cannot be mapped directly
into the Java parameter passing mechanism. This mapping defines additional
holder classes for all the IDL basic and user-defined types which are used to imple-
ment these parameter modes in Java. The client supplies an instance of the appro-
priate holder Java class that is passed (by value) for each IDL out or inout
parameter. The contents of the holder instance (but not the instance itself) are modi-
fied by the invocation, and the client uses the (possibly) changed contents after the
invocation returns.
IDL-to-Java Language Mapping 19-19

Using the IDL/Java Language Mappings
IDL
module Example {

interface Modes {
long operation(in long inArg,

out long outArg,
inout long inoutArg);

};
};

Java
package Example;

public interface Modes {
int operation(int inArg,

IntHolder outArg,
IntHolder inoutArg);

}

In the above sample code, the result comes back as an ordinary result and the
actual in parameters only an ordinary value. But for the out and inout parameters,
an appropriate holder must be constructed. A typical use case might look as fol-
lows:

// user Java code
// select a target object
Example.Modes target = ...;

// get the in actual value
int inArg = 57;

// prepare to receive out
IntHolder outHolder = new IntHolder();

// set up the in side of the inout
IntHolder inoutHolder = new IntHolder(131);

// make the invocation
int result =target.operation(inArg, outHolder, inoutHolder);

// use the value of the outHolder
... outHolder.value ...

// use the value of the inoutHolder
... inoutHolder.value ...
19-20 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
Before the invocation, the input value of the inout parameter must be set in the
holder instance that will be the actual parameter. The inout holder can be filled in
either by constructing a new holder from a value, or by assigning to the value of an
existing holder of the appropriate type. After the invocation, the client uses the out-
Holder.value to access the value of the out parameter, and uses the
inoutHolder.value to access the output value of the inout parameter. The return
result of the IDL operation is available as the result of the invocation.

Exceptions
An IDL exception is mapped to a Java class that has instance variables for the fields
of the exception and constructors (similar to struct type). An IDL exception can
be either a user-defined exception or a system exception.

A system exception is an unchecked exception inheriting indirectly from
java.lang.RuntimeException . A user-defined exception is a checked excep-
tion inheriting indirectly from java.lang.Exception . The figure below depicts
the inheritance relationship between the two exception types.

Figure 19–1 Relationship between user-defined and system exceptions

User-Defined Exceptions
A user-defined exception is mapped to a Java final class that extends
org.omg.CORBA.UserException . Corresponding Helper and Holder classes are
generated.

IDL
module Example {

exception exc1 {string reason;};
};

java.lang.Exception

org.omg.CORBA.UserException java.lang.RuntimeException

userException1 org.omg.CORBA.SystemException
IDL-to-Java Language Mapping 19-21

Using the IDL/Java Language Mappings
Java
package Example;
final public class exc1 extends org.omg.CORBA.UserException {

// instance
public String reason;

// default constructor
public exc1() {...}

// constructor
public exc1(String r) {...}

}

// helper class
public class exc1Helper {

public static void insert(org.omg.CORBA.Any a, exc1 t) {...}
public static exc1 extract(Any, a) {...}
public static org.omg.CORBA.TypeCode type() {...}
public static String id() {...}
public static exc1 read(org.omg.CORBA.portable.InputStream istream) {..}
public static void write(org.omg.CORBA.portable.OutputStream ostream, exc1

value) {...}
}

// holder class
final public class exc1Holder implements org.omg.CORBA.portable.Streamable {

public exc1 value;
public exc1Holder() {}
public exc1Holder(exc1 initial) {...}
public void _read(org.omg.CORBA.portable.InputStream i) {...}
public void _write(org.omg.CORBA.portable.OutputStream o) {...}
public org.omg.CORBA.TypeCode _type() {...}

}

System Exceptions

A standard IDL system exception is mapped to a Java final class that extends
org.omg.CORBA.SystemException . Access to the IDL major and minor excep-
tion codes are provided by this final class . For org.omg.CORBA.SystemEx-
ception , there are no public constructors and only classes that extend it can be
instantiated.
19-22 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
The following table lists the mapping of IDL standard system exceptions to Java
classes.

Table 19–6 IDL standard system exceptions mapping to Java classes

IDL Exception Java Class Name

CORBA::UNKOWN org.omg.CORBA.UNKNOWN

CORBA::BAD_PARAM org.omg.CORBA.BAD_PARAM

CORBA::NO_MEMORY org.omg.CORBA.NO_MEMORY

CORBA::IMP_LIMIT org.omg.CORBA.IMP_LIMIT

CORBA::COMM_FAILURE org.omg.CORBA.COMM_FAILURE

CORBA::INV_OBJREF org.omg.CORBA.INV_OBJEF

CORBA::NO_PERMISSION org.omg.CORBA.NO_PERMISSION

CORBA::INTERNAL org.omg.CORBA.INTERNAL

CORBA::MARSHAL org.omg.CORBA.MARSHAL

CORBA::INITIALIZE org.omg.CORBA.INITIALIZE

CORBA::NO_IMPLEMENT org.omg.CORBA.NO_IMPLEMENT

CORBA::BAD_TYPECODE org.omg.CORBA.BAD_TYPECODE

CORBA::BAD_OPERATION org.omg.CORBA.BAD_OPERATION

CORBA::NO_RESOURCES org.omg.CORBA.NO_RESOURCES

CORBA::NO_RESPONSE org.omg.CORBA.NO_RESPONSE

CORBA::PERSIST_STORE org.omg.CORBA.PERSIST_STORE

CORBA::BAD_INV_ORDER org.omg.CORBA.BAD_INV_ORDER

CORBA::TRANSIENT org.omg.CORBA.TRANSIENT

CORBA::FREE_MEM org.omg.CORBA.FREE_MEM

CORBA::INV_IDENT org.omg.CORBA.INV_IDENT

CORBA::INV_FLAG org.omg.CORBA.INV_FLAG

CORBA::INTF_REPOS prg.omg.CORBA.INTF_REPOS

CORBA::BAD_CONTEXT org.omg.CORBA.BAD_CONTEXT

CORBA::OBJ_ADAPTER org.omg.CORBA.OBJ_ADAPTER

CORBA::DATA_CONVERSION org.omg.CORBA.DATA_CONVERSION
IDL-to-Java Language Mapping 19-23

Using the IDL/Java Language Mappings
The IDL Any Type
The IDL-to-Java compiler maps the Any type to the Java class
org.omg.CORBA.Any which contains methods to insert and extract instances of
predefined types. An insert and extract method is defined for each primitive IDL
type while a pair is defined for a generic streamable for non-primitive IDL types.
These methods provide a fast interface for use by stubs and skeletons. Note that
holder classes are taken by these methods. Also, the insert operations set the speci-
fied value and reset the Any’s type if needed.

IDL
module mod_a {

interface int_a{
Any bogus(in any para_a);
...
...

};
};

Java
package org.omg.CORBA;

abstract public class Any {

abstract public boolean equal(org.omg.CORBA.Any para_a);

abstract public org.omg.CORBA.Any extract_any()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_any(org.omg.CORBA.Any para_a);
}

CORBA::OBJECT_NOT_EXIST org.omg.CORBA.OBJECT_NOT_EXIST

CORBA::TRANSACTIONREQUIRED org.omg.CORBA.TRANSACTIONREQUIRED

CORBA::TRANSACTIONROLLEDBACK org.omg.CORBA.TRANSACTIONROLLEDBACK

CORBA::INVALIDTRANSACTION org.omg.CORBA.INVALIDTRANSACTION

Table 19–6 IDL standard system exceptions mapping to Java classes

IDL Exception Java Class Name
19-24 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
Comprehensive Java Listing for Primitive and Non-primitive Types
package org.omg.CORBA;

abstract public class Any {

abstract public boolean equal(org.omg.CORBA.Any a);

// type code accessors
abstract public org.omg.CORBA.TypeCode type();
abstract public void type(org.omg.CORBA.TypeCode t);

// read and write values to/from streams
// throw excep when typecode inconsistent with value
abstract public void read_value(

org.omg.CORBA.portable.InputStream is,
org.omg.CORBA.TypeCode t) throws org.omg.CORBA.MARSHAL;

abstract public void write_value(org.omg.CORBA.portable.OutputStream os);
abstract public org.omg.CORBA.portable.OutputStream create_output_stream();
abstract public org.omg.CORBA.portable.InputStream create_input_stream();

// insert and extract each primitive type
abstract public short extract_short()

throws org.omg.CORBA.BAD_OPERATION;
abstract public void insert_short(short s);

abstract public int extract_long()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_long(int i);

abstract public long extract_longlong()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_longlong(long l);

abstract public short extract_ushort()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_ushort(short s);

abstract public int extract_ulong()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_ulong(int i);

abstract public long extract_ulonglong()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_ulonglong(long l);
IDL-to-Java Language Mapping 19-25

Using the IDL/Java Language Mappings
abstract public float extract_float()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_float(float f);

abstract public double extract_double()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_double(double d);

abstract public boolean extract_boolean()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_boolean(boolean b);

abstract public char extract_char()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_char(char c)
throws org.omg.CORBA.DATA_CONVERSION;

abstract public char extract_wchar()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_wchar(char c);

abstract public byte extract_octet()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_octet(byte b);

abstract public org.omg.CORBA.Any extract_any()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_any(org.omg.CORBA.Any a);

abstract public org.omg.CORBA.Object extract_Object()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_Object(org.omg.CORBA.Object o);

// throw excep when typecode inconsistent with value
abstract public void

insert_Object(org.omg.CORBA.Object o, org.omg.CORBA.TypeCode t)
throws org.omg.CORBA.MARSHAL;

abstract public String extract_string()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_string(String s)
throws org.omg.CORBA.DATA_CONVERSION, org.omg.CORBA.MAR-SHAL;
19-26 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Using the IDL/Java Language Mappings
abstract public String extract_wstring()
throws org.omg.CORBA.BAD_OPERATION;

abstract public void insert_wstring(String s)
throws org.omg.CORBA.MARSHAL;

// insert and extract typecode
abstract public org.omg.CORBA.TypeCode extract_TypeCode()

throws org.omg.CORBA.BAD_OPERATION;
abstract public voidinsert_TypeCode(org.omg.CORBA.TypeCode t);

// insert and extract Principal
abstract public org.omg.CORBA.Principal extract_Principal()

throws org.omg.CORBA.BAD_OPERATION;
abstract public void insert_Principal(org.omg.CORBA.Principal p);

// insert non-primitive IDL types
abstract public void insert_Streamable(org.omg.CORBA.portable.

Streamable s);
}

Types Nested Within Interfaces
An IDL type declared within an interface is mapped into a special “scope” package
in Java that contains the mapped class declarations. This is because Java does not
allow classes to be nested within interfaces while IDL allows type declarations to
be nested within interfaces.

IDL
module Example {

interface Foo {
exception e1 {};

};
};

Java
package Example.FooPackage;
final public class e1 extends org.omg.CORBA.UserException {

...
}

IDL-to-Java Language Mapping 19-27

CORBA Pseudo-Object API for Java Clients
Typedefs
Java does not have a typedef construct.

Simple IDL types
IDL types that are mapped to simple Java types may not be subclassed in Java.
Hence any typedefs that are type declarations for simple types are mapped to the
original (mapped type) everywhere the typedef type appears. The IDL types cov-
ered by this rule are described in Basic Types on page 19-5.

Helper classes are generated for all typedefs.

Complex IDL types
Typedefs for non arrays and sequences are "unwound" to their original type until a
simple IDL type or user-defined IDL type (of the non typedef variety) is encoun-
tered. Holder classes are generated for sequence and array typedefs only.

// IDL
struct EmpName {
 string firstName;
 string lastName;
};
typedef EmpName EmpRec;

// generated Java
// regular struct mapping for EmpName
// regular helper class mapping for EmpRec
final public class EmpName { ... }

public class EmpRecHelper { ... }

CORBA Pseudo-Object API for Java Clients
Oracle Application Server provides Java mappings for CORBA pseudo objects. For
each IDL pseudo object, a Java language construct or pseudo interface is used to
represent it. In the case of a pseudo interface, it is mapped to a Java public
abstract class that does not extend or inherit from any other classes or inter-
faces. In addition, for a pseudo interface, no helper or holder classes are generated,
and it is not represented in the Interface Repository.
19-28 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

CORBA Pseudo-Object API for Java Clients
Contents
This chapter documents the Java bindings for the following CORBA pseudo-object
interfaces:

All pseudo objects discussed in this chapter are implied to be declared in the follow-
ing module hierarchy:

module org {
module omg {

module CORBA {
...
}

}
}

The above declaration is implied in all the IDL listings in this chapter. The mapped
Java package is consequently org.omg.CORBA .

Note: Information in this chapter was extracted from Chapter 24,
Mapping of OMG IDL to Java, of OMG’s CORBA 2.2 specification
document. Where similarities exist in code segments and descrip-
tions of mappings between OMG’s specification document and this
manual, the code or descriptions are copyright of the Object Man-
agement Group and reprinted with permission.

Environment Contexts TCKind

Exceptions ContextList TypeCode

Exception Lists Request ORB

Name-Value Pairs ServerRequest Object (CORBA::Object)

NV Lists

Note: The Oracle ORB adds some extensions to the ORB inter-
face, which are described in “CORBA Pseudo-Object API for Java
Clients” on page 19-28.
IDL-to-Java Language Mapping 19-29

Environment
Environment
The Environment pseudo object is used during request operations to allow access
to exception information.

Java
package org.omg.CORBA;

public abstract class Environment {
void exception(java.lang.Exception except);
java.lang.Exception exception();
void clear();

}

Exceptions
The CORBA pseudo object IDL mapping to Java uses three exceptions: Bounds,
BadKind, and InvalidName. These are mapped as normal user exceptions, and
Holder and Helper classes for them are not generated.

The exceptions are defined within the scopes in which they are used as follows:

Java
package org.omg.CORBA;

final public class Bounds extends org.omg.CORBA.UserException {
public Bounds() {...}

}

package org.omg.CORBA.TypeCodePackage;

final public class Bounds extends org.omg.CORBA.UserException {
public Bounds() {...}

}
final public class BadKind extends org.omg.CORBA.UserException {

Exceptions Scopes

Bounds Package - TypeCodePackage
Pseudo Objects - NVList, ExceptionList, ContextList

BadKind Package - TypeCodePackage

InvalidName Package - ORBPackage
Pseudo Objects - ORB
19-30 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Name-Value Pairs
public BadKind() {...}
}

package org.omg.CORBA.ORBPackage;

final public class InvalidName extends org.omg.CORBA.UserException {
public InvalidName() {...}

}

Exception Lists
An Exception List is used in the CORBA Dynamic Invocation Interface (DII) to
describe exceptions that can be raised by IDL operations.

IDL
pseudo interface ExceptionList {

readonly attribute unsigned long count;
void add(in TypeCode exc);
TypeCode item (in unsigned long index) raises (CORBA::Bounds);
void remove (in unsigned long index) raises (CORBA::Bounds);

};

Java
package org.omg.CORBA;
public abstract class ExceptionList {

public abstract int count();
public abstract void add(TypeCode exc);
public abstract TypeCode item(int index) throws org.omg.CORBA.Bounds;
public abstract void remove(int index) throws org.omg.CORBA.Bounds;

}

Name-Value Pairs
A name-value pair or NamedValue is used in the DII to describe arguments and
return values. It can also be used to pass property and value pairs in context rou-
tines.
IDL-to-Java Language Mapping 19-31

Name-Value Pairs
IDL
typedef unsigned long Flags;
typedef string Identifier;
const Flags ARG_IN=1;
const Flags ARG_OUT=2;
const Flags ARG_INOUT=3;
const Flags CTX_RESTRICT_SCOPE=15;

pseudo interface NamedValue {
readonly attribute Identifier name;
readonly attribute any value;
readonly attribute Flags flags;

};

Java
package org.omg.CORBA;

public interface ARG_IN {
public static final int value = 1;

}
public interface ARG_OUT {

public static final int value = 2;
}
public interface ARG_INOUT {

public static final int value = 3;
}
public interface CTX_RESTRICT_SCOPE {

public static final int value = 15;
}
public abstract class NamedValue {

public abstract String name();
public abstract Any value();
public abstract int flags();

}

19-32 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Contexts
NV Lists
A NVList is used in the DII to describe arguments. In context routines it is used to
describe context values.

IDL
pseudo interface NVList {

readonly attribute unsigned long count;
NamedValue add(in Flags flags);
NamedValue add_item(in Identifier item_name, in Flags flags);
NamedValue add_value(in Identifier item_name, in any val, in Flags flags);
NamedValue item(in unsigned long index) raises (CORBA::Bounds);
void remove(in unsigned long index) raises (CORBA::Bounds);

};

Java
package org.omg.CORBA;
public abstract class NVList {

public abstract int count();
public abstract NamedValue add(int flags);
public abstract NamedValue add_item(String item_name, int flags);
public abstract NamedValue add_value(String item_name, Any val, int flags);
public abstract NamedValue item(int index) throws org.omg.CORBA.Bounds;
public abstract void remove(int index) throws org.omg.CORBA.Bounds;

}

Contexts
A Context pseudo object is used to specify a context in the DII. This context con-
tains context strings which must be resolved before being sent with a request invo-
cation.

IDL
pseudo interface Context {

readonly attribute Identifier context_name;
readonly attribute Context parent;
Context create_child(in Identifier child_ctx_name);
void set_one_value(in Identifier propname, in any propvalue);
void set_values(in NVList values);
void delete_values(in Identifier propname);
NVList get_values(in Identifier start_scope,

in Flags op_flags,
in Identifier pattern);
IDL-to-Java Language Mapping 19-33

ContextList
};

Java
package org.omg.CORBA;
public abstract class Context {

public abstract String context_name();
public abstract Context parent();
public abstract Context create_child(String child_ctx_name);
public abstract void set_one_value(String propname, Any propvalue);
public abstract void set_values(NVList values);
public abstract void delete_values(String propname);
public abstract NVList get_values(String start_scpe, int op_flags, String

pattern);
}

ContextList
The ContextList pseudo object allows you to add and remove items to context
strings.

IDL
pseudo interface ContextList {

readonly attribute unsigned long count;
void add(in string ctx);
string item(in unsigned long index) raises (CORBA::Bounds);
void remove(in unsigned long index) raises (CORBA::Bounds);

};

Java
package org.omg.CORBA;
public abstract class ContextList {

public abstract int count();
public abstract void add(String ctx);
public abstract String item(int index) throws org.omg.CORBA.Bounds;
public abstract void remove(int index) throws org.omg.CORBA.Bounds;

}

19-34 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Request
Request
The Request pseudo interface maps into an abstract class in Java. It contains meth-
ods to carry out a request invocation from a client.

IDL
pseudo interface Request {

readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
readonly attribute Environment env;
readonly attribute ExceptionList exceptions;
readonly attribute ContextList contexts;
attribute Context ctx;
any add_in_arg();
any add_named_in_arg(in string name);
any add_inout_arg();
any add_named_inout_arg(in string name);
any add_out_arg();
any add_named_out_arg(in string name);
void set_return_type(in TypeCode tc);
any return_value();
void invoke();
void send_oneway();
void send_deferred();
void get_response();
boolean poll_response();

};

Java
package org.omg.CORBA;
public abstract class Request {

public abstract Object target();
public abstract String operation();
public abstract NVList arguments();
public abstract NamedValue result();
public abstract Environment env();
public abstract ExceptionList exceptions();
public abstract ContextList contexts();
public abstract Context ctx();
public abstract void ctx(Context c);
public abstract Any add_in_arg();
public abstract Any add_named_in_arg(String name);
IDL-to-Java Language Mapping 19-35

ServerRequest
public abstract Any add_inout_arg();
public abstract Any add_named_inout_arg(String name);
public abstract Any add_out_arg();
public abstract Any add_named_out_arg(String name);
public abstract void set_return_type(TypeCode tc);
public abstract Any return_value();
public abstract void invoke();
public abstract void send_oneway();
public abstract void send_deferred();
public abstract void get_response();
public abstract boolean poll_response();

}

ServerRequest

IDL
pseudo interface ServerRequest {

Identifier op_name();
Context ctx();
void params(in NVList parms);
void result(in Any res);
void except(in Any ex);

};

Java
package org.omg.CORBA;
public abstract class ServerRequest {

public abstract String op_name();
public abstract Context ctx();
public abstract void params(NVList parms);
public abstract void result(Any a);
public abstract void except(Any a);

}

19-36 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

TCKind
TCKind
The enumerated IDL TCKind type is mapped to the Java TCKind class as shown
below.

IDL
enum TCKind {

tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong, tk_float,
tk_double, tk_boolean, tk_char, tk_octet, tk_any, tk_TypeCode,

tk_Principal, tk_objref, tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except, tk_longlong, tk_ulonglong,
tk_longdouble, tk_wchar, tk_wstring, tk_fixed

};

Java
package org.omg.CORBA;
public final class TCKind {

public static final int _tk_null = 0;
public static final

TCKind tk_null = new TCKind(_tk_null);
public static final int _tk_void = 1;

TCKind tk_void = new TCKind(_tk_void);
public static final int _tk_short = 2;

TCKind tk_short = new TCKind(_tk_short);
public static final int _tk_long = 3;

TCKind tk_long = new TCKind(_tk_long);
public static final int _tk_ushort = 4;

TCKind tk_ushort = new TCKind(_tk_ushort);
public static final int _tk_ulong = 5;

TCKind tk_ulong = new TCKind(_tk_ulong);
public static final int _tk_float = 6;

TCKind tk_float = new TCKind(_tk_float);
public static final int _tk_double = 7;

TCKind tk_double = new TCKind(_tk_double);
public static final int _tk_boolean = 8;

TCKind tk_boolean = new TCKind(_tk_boolean);
public static final int _tk_char = 9;

TCKind tk_char = new TCKind(_tk_char);
public static final int _tk_octet = 10;

TCKind tk_octet = new TCKind(_tk_octet);
public static final int _tk_any = 11;

TCKind tk_any = new TCKind(_tk_any);
public static final int _tk_TypeCode = 12;

TCKind tk_TypeCode = new TCKind(_tk_TypeCode);
IDL-to-Java Language Mapping 19-37

TCKind
public static final int _tk_Principal = 13;
TCKind tk_Principal = new TCKind(_tk_Principal);

public static final int _tk_objref = 14;
TCKind tk_objref = new TCKind(_tk_objref);

public static final int _tk_stuct = 15;
TCKind tk_stuct = new TCKind(_tk_stuct);

public static final int _tk_union = 16;
TCKind tk_union = new TCKind(_tk_union);

public static final int _tk_enum = 17;
TCKind tk_enum = new TCKind(_tk_enum);

public static final int _tk_string = 18;
TCKind tk_string = new TCKind(_tk_string);

public static final int _tk_sequence = 19;
TCKind tk_sequence = new TCKind(_tk_sequence);

public static final int _tk_array = 20;
TCKind tk_array = new TCKind(_tk_array);

public static final int _tk_alias = 21;
TCKind tk_alias = new TCKind(_tk_alias);

public static final int _tk_except = 22;
TCKind tk_except = new TCKind(_tk_except);

public static final int _tk_longlong = 23;
TCKind tk_longlong = new TCKind(_tk_longlong);

public static final int _tk_ulonglong = 24;
TCKind tk_ulonglong = new TCKind(_tk_ulonglong);

public static final int _tk_longdouble = 25;
TCKind tk_longdouble = new TCKind(_tk_longdouble);

public static final int _tk_wchar = 26;
TCKind tk_wchar = new TCKind(_tk_wchar);

public static final int _tk_wstring = 27;
TCKind tk_wstring = new TCKind(_tk_wstring);

public static final int _tk_fixed = 28;
TCKind tk_fixed = new TCKind(_tk_fixed);

public int value() {...}
public static TCKind from_int(int value) {...}
private TCKind(int value) {...}

}

19-38 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

TypeCode
TypeCode
Typecodes are mapped for several types.

IDL
pseudo interface TypeCode {

exception Bounds {};
exception BadKind {};

// for all TypeCode kinds
boolean equal(in TypeCode tc);
TCKind kind();

// for objref, struct, union, enum, alias, and except
RepositoryID id() raises (BadKind);
RepositoryId name() raises (BadKind);

// for struct, union, enum, and except
unsigned long member_count() raises (BadKind);
Identifier member_name(in unsigned long index) raises (BadKind, Bounds);

// for struct, union, and except
TypeCode member_type(in unsigned long index) raises (BadKind, Bounds);

// for union
any member_label(in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type() raises (BadKind);
long default_index() raises (BadKind);

// for string, sequence, and array
unsigned long length() raises (BadKind);
TypeCode content_type() raises (BadKind);

}

Java
package org.omg.CORBA;
public abstract class TypeCode {

// for all TypeCode kinds
public abstract boolean equal(TypeCode tc);
public abstract TCKind kind();

// for objref, struct, union, enum, alias, and except
public abstract String id() throws TypeCodePackage.BadKind;
IDL-to-Java Language Mapping 19-39

ORB
public abstract String name() throws TypeCodePackage.BadKind;

// for struct, union, enum, and except
public abstract int member_count() throws TypeCodePackage.BadKind;
public abstract String member_name(int index) throws

TypeCodePackage.BadKind;

// for struct, union, and except
public abstract TypeCode member_type(int index) throws

TypeCodePackage.BadKind, TypeCodePackage.Bounds;

// for union
public abstract Any member_label(int index) throws TypeCodePackage.BadKind,

TypeCodePackage.Bounds;
public abstract TypeCode discriminator_type() throws

TypeCodePackage.BadKind;
public abstract int default_index() throws TypeCodePackage.BadKind;

// for string, sequence, and array
public abstract int length() throws TypeCodePackage.BadKind;
public abstract TypeCode content_type() throws TypeCodePackage.BadKind;

}

ORB
The ORB interface contains methods for creating, registering, retrieving, and listing
CORBA objects. Java mapping is provided for the following subset of the ORB
interface. The Oracle ORB adds some extensions to this interface, which are
included in the description of the other methods in “Description of ORB interface
methods” on page 19-44. The Oracle ORB extensions include the methods: bind,
run, stop, shutdown, list_initial_services_remote, and
resolve_initial_references_remote. In addition, the connect method has been
expanded to accept other parameters.

■ IDL

■ Java

■ Description of ORB interface methods

Note: DII and DSI are not supported in this release.
19-40 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ORB
IDL
pseudo interface ORB {

exception InvalidName {};

typedef string ObjectId;
typedef sequence<ObjectId> ObjectIdList;

ObjectIdList list_initial_services();
Object resolve_initial_references(in ObjectId object_name)

raises(InvalidName);

string object_to_string(in Object obj);
Object string_to_object(in string str);

NVList create_list(in long count);
NVList create_operation_list(in OperationDef oper);
NamedValue create_named_value(in String name, in Any value, in Flags flags);
ExceptionList create_exception_list();
ContextList create_context_list();

Context get_default_context();
Environment create_environment();

void send_multiple_requests_oneway(in RequestSeq req);
void send_multiple_requests_deferred(in RequestSeq req);
boolean poll_next_response();
Request get_next_response();

// typecode creation
TypeCode create_struct_tc (in RepositoryId id,

in Identifier name,
in StructMemberSeq members);

TypeCode create_union_tc (in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members);

TypeCode create_enum_tc (in RepositoryId id,
in Identifier name,
in EnumMemberSeq members);

TypeCode create_alias_tc (in RepositoryId id,
in Identifier name,
IDL-to-Java Language Mapping 19-41

ORB
in TypeCode original_type);

TypeCode create_exception_tc (in RepositoryId id,
in Identifier name,
in StructMemberSeq members);

TypeCode create_interface_tc (in RepositoryId id,
in Identifier name);

TypeCode create_string_tc (in unsigned long bound);

TypeCode create_wstring_tc (in unsigned long bound);

TypeCode create_sequence_tc (in unsigned long bound,
in TypeCode element_type);

TypeCode create_recursive_sequence_tc(in unsigned long bound,
in unsigned long offset);

TypeCode create_array_tc (in unsigned long length,
in TypeCode element_type);

Current get_current();

// Additional operations for Java mapping
TypeCode get_primitive_tc(in TCKind tcKind);
Any create_any();
OutputStream create_output_stream();
void connect(Object obj);
void disconnect(Object obj);

// additional methods for ORB initialization go here, but only
// appear in the mapped Java
//
// public static ORB init(Strings[] args, Properties props);
// public static ORB init(Applet app, Properties props);
// public static ORB init();
// abstract protected void set_parameters(String[] args,
// java.util.Properties props);
// abstract protected void set_parameters(java.applet.Applet app,
// java.util.Properties props);
}

19-42 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ORB
Java
package org.omg.CORBA;
public abstract class ORB {

public abstract String[] list_initial_services();
public abstract org.omg.CORBA.Object resolve_initial_references(String

object_name) throws org.omg.CORBA.ORBPackage.InvalidName;

public abstract String object_to_string(org.omg.CORBA.Object obj);
public abstract org.omg.CORBA.Object string_to_object(String str);

public abstract NVList create_list(int count);
public abstract NVList create_operation_list(OperationDef oper);
public abstract NamedValue create_named_value(String name, Any value,

int flags);

public abstract ExceptionList create_exception_list();
public abstract ContextList create_context_list();
public abstract Context get_default_context();
public abstract Environment create_environment();

public abstract void send_multiple_requests_oneway(Request[] req);
public abstract void sent_multiple_requests_deferred(Request[] req);
public abstract boolean poll_next_response();
public abstract Request get_next_response();

// typecode creation
public abstract TypeCode create_struct_tc(String id, String name,

StructMember[] members);
public abstract TypeCode create_union_tc(String id, String name,

TypeCode discriminator_type,
UnionMember[] members);

public abstract TypeCode create_enum_tc(String id, String name,
EnumMember[] members);

public abstract TypeCode create_alias_tc(String id, String name,
TypeCode original_type);

public abstract TypeCode create_exception_tc(String id, String name,
StructMember[] members);

public abstract TypeCode create_interface_tc(String id, String name);
public abstract TypeCode create_string_tc(int bound);
public abstract TypeCode create_wstring_tc(int bound);
public abstract TypeCode create_sequence_tc(int bound,

TypeCode element_type);
public abstract TypeCode create_recursive_sequence_tc(int bound,

int offset);
IDL-to-Java Language Mapping 19-43

ORB
public abstract TypeCode create_array_tc(int length, TypeCode element_type);
public abstract Current get_current();

// additional methods for IDL/Java mapping
public abstract TypeCode get_primitive_tc(TCKind tcKind);
public abstract Any create_any();
public abstract org.omg.CORBA.portable.OutputStream create_output_stream();
public abstract void connect(org.omg.CORBA.Object obj);
public abstract void disconnect(org.omg.CORBA.Object obj);

// additional static methods for ORB initialization
public static ORB init(Strings[] args, Properties props);
public static ORB init(Applet app, Properties props);
public static ORB init();
abstract protected void set_parameters(String[] args,

java.util.Properties props);
abstract protected void set_parameters(java.applet.Applet app,

java.util.Properties props);
}

Table 19–7 Description of ORB interface methods

Method Description Page

bind(String) The bind method returns a reference to an
object instance (implementation) of a speci-
fied interface.

 on
page 19-58

bind(String, String) The bind method returns a reference to an
object instance (implementation) of a speci-
fied interface.

 on
page 19-58

bind (String, String, String, int) The bind method returns a reference to an
object instance (implementation) of a speci-
fied interface.

 on
page 19-59

connect(Object) Register the implementation object with
the ORB.

 on
page 19-49

connect(Object, implname) Register the implementation object with
the ORB.

 on
page 19-50

connect(Object, flag) Register the implementation object with
the ORB.

 on
page 19-50

connect(Object, flag, implname) Register the implementation object with
the ORB.

 on
page 19-50
19-44 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ORB
create_alias_tc(String, String, TypeCode) Creates an alias typecode given the reposi-
tory identifier, the structure name, and the
base typecode.

 on
page 19-52

create_any() Creates a CORBA::Any primitive data type. on
page 19-56

create_array_tc(int, TypeCode) Creates an array typecode given the first
index value and nested typecodes that
describe the rest of the index values and
types.

 on
page 19-55

create_enum_tc(String, String, String[]) Creates enumerator typecode given the
repository identifier, the enum name, and
the enum members.

 on
page 19-52

create_exception_tc(String, String, StructMember[]) Creates an exception typecode given the
repository identifier, the exception name,
and any exception members.

 on
page 19-53

create_interface_tc(String, String) Creates an object typecode given the reposi-
tory identifier and interface name.

 on
page 19-53

create_output_stream() Creates an IIOP output stream. on
page 19-56

create_recursive_sequence_tc(int, int) Creates a recursive sequence typecode
given the number of elements, the offset in
bytes of the typecode, and the logical nest-
ing offset.

 on
page 19-55

create_sequence_tc(int, TypeCode) Creates a sequence typecode given the
number and type of the sequence elements.

 on
page 19-54

create_string_tc(int) Creates a string typecode given the
bounded length of the string.

 on
page 19-54

create_struct_tc(String, String, StructMember[]) Creates a struct typecode given the reposi-
tory identifier, the structure name, and the
structure members.

 on
page 19-51

create_union_tc(String, String, TypeCode,
UnionMember[])

Creates a union typecode given the reposi-
tory identifier, the union name, union dis-
criminator, and all union members.

 on
page 19-51

create_wstring_tc(int) Creates a wide string typecode given the
bounded length of the string.

 on
page 19-54

Method Description Page
IDL-to-Java Language Mapping 19-45

ORB
disconnect(Object) The disconnect method deactivates and
deregisters the object instance.

 on
page 19-51

get_primitive_tc(TCKind) Creates a primitive typecode given the
kind representation of the primitive.

 on
page 19-55

init() The init method is used to initialize the
ORB runtime for the process and retrieve
the active ORB object reference.

 on
page 19-56

init(Applet, Properties) The init method is used to initialize the
ORB runtime for the process and retrieves
the active ORB object reference.

 on
page 19-57

init(String[], Properties) The init method is used to initialize the
ORB runtime for the process and retrieve
the active ORB object reference.

 on
page 19-57

list_initial_services() The list_initial_services method may be
used to obtain a list of possible references,
then resolve_initial_references is called to
obtain the desired reference(s) out of the
previously retrieved list.

 on
page 19-47

list_initial_services_remote(String[]) The list_initial_services_remote may be
used to obtain a list of possible references
from a remote site.

 on
page 19-48

object_to_string(Object) Converts an object reference to its string
representation, suitable for writing the
object reference to a persistent store.

 on
page 19-49

resolve_initial_references(String) The resolve_initial_references method may
be used to obtain the Naming Service ini-
tial object reference.

 on
page 19-47

resolve_initial_references_remote(String, String[]) The resolve_initial_references_remote
method may be used to obtain the Naming
Service initial object reference from a
remote site.

 on
page 19-48

run() The run method enables all registered
implementations to have incoming
requests serviced.

 on
page 19-60

shutdown() The shutdown method terminates the ORB
runtime for this process.

 on
page 19-60

Method Description Page
19-46 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ORB
list_initial_services
public abstract String[] list_initial_services()

The list_initial_services method may be used to obtain a list of possible references,
then resolve_initial_references is called to obtain the desired reference(s) out of the
previously retrieved list. The list_initial_services method lists all available initial
references. Initial references are intended for obtaining object references to initial
bootstrap services. At this time, only the Naming Service initial object reference is
available for retrieval from resolve_initial_references. The type for the NameService
object reference is CORBA::NamingContext.

Returns
■ Output list of initial reference names.

resolve_initial_references
public abstract Object resolve_initial_references(String object_name)

throws InvalidName

The resolve_initial_references method may be used to obtain the Naming Service
initial object reference.

Parameters
■ modlist - The name for the Name Server: NameService.

Returns
■ The Name Server initial object reference or a null object reference if the service

is not available.

Throws: InvalidName
■ thrown if the object_name is invalid.

stop() The stop method stops the ORB runtime
from processing requests.

 on
page 19-60

string_to_object(String) Converts a string into an object reference. on
page 19-49

Method Description Page
IDL-to-Java Language Mapping 19-47

ORB
list_initial_services_remote
public abstract String[] list_initial_services_remote(String modlist[])

The list_initial_services_remote may be used to obtain a list of possible references
from a remote site. The resolve_initial_references_remote is called to obtain the
desired reference out of the retrieved list. The list_initial_services_remote method
lists all available initial references.

Initial references are intended for obtaining object references to initial bootstrap ser-
vices. At this time, only the Naming Service initial object reference is available for
retrieval from resolve_initial_references_remote. The type for the NameService
object reference is CORBA::NamingContext.

Parameters
■ modlist - Remote site designated by a string with the following format:

"iiop://"

Returns
■ Output list of initial reference names.

resolve_initial_references_remote
public abstract Object resolve_initial_references_remote(String object_name,

String modlist[]) throws InvalidName

The resolve_initial_references_remote method may be used to obtain the Naming
Service initial object reference from a remote site.

Parameters
■ object_name - The name for the Name Server: NameService.

■ modlist - Remote site designated by a string with the following format: "iiop://
"

Returns
■ The Name Server initial object reference or a null object reference if the service

is not available.

Throws: InvalidName
■ thrown if the object_name is invalid.
19-48 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ORB
object_to_string
public abstract String object_to_string(Object obj)

Converts an object reference to its string representation, suitable for writing the
object reference to a persistent store. The string_to_object method converts the
string back into an object reference.

Parameters
■ obj - Object reference to convert to a string.

Returns
■ String representation of the given object reference.

string_to_object
public abstract Object string_to_object(String str)

Converts a string into an object reference. The string must have been created by the
object_to_string method.

Parameters
■ str - stringified object reference, typically created by the object_to_string

method.

Returns
■ The result of converting the string into an object reference.

connect
public abstract void connect(Object obj)

Register the implementation object with the ORB. Once registered the ORB can
locate the object instance when requested by clients. The state of the object defaults
to transient stateful.

Parameters
■ obj - object instance for the implementation
IDL-to-Java Language Mapping 19-49

ORB
connect
public abstract void connect(Object obj, String implname)

Register the implementation object with the ORB. Once registered the ORB can
locate the object instance when requested by clients.

Parameters
■ obj - object instance for the implementation

■ implname - The name for the implementation. This name can be used by the
ORB::bind method to specify retrieving this particular object.

connect
public abstract void connect(Object obj, int flag)

Register the implementation object with the ORB. Once registered the ORB can
locate the object instance when requested by clients.

Parameters
■ obj - object instance for the implementation

■ flag - Specifies the state of the object: OBJECT_STATELESS or
OBJECT_TRANSIENT.

connect
public abstract void connect(Object obj, int flag, String implname)

Register the implementation object with the ORB. Once registered the ORB can
locate the object instance when requested by clients.

Parameters
■ obj - object instance for the implementation

■ flag - Specifies the state of the object: OBJECT_STATELESS or
OBJECT_TRANSIENT.

■ implname - The name for the implementation. This name can be used by the
ORB::bind method to specify retrieving this particular object.
19-50 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ORB
disconnect
public abstract void disconnect(Object obj)

The disconnect method deactivates and deregisters the object instance. This
method deactivates the object, releases the object reference, and deregisters the
implementation object with the ORB.

Parameters
■ obj - object instance for the implementation

create_struct_tc
public abstract TypeCode create_struct_tc(String id,
 String name,
 StructMember members[])

Creates a struct typecode given the repository identifier, the structure name, and
the structure members.

Parameters
■ id - Repository identifier

■ name - Structure name

■ members - Sequence of members, including name and typecode for each struc-
ture member.

Returns
■ Return a struct typecode as described by the input parameters.

create_union_tc
public abstract Typecode create_union_tc(String id,
 String name,
 TypeCode discriminator_type,
 UnionMember members[])

Creates a union typecode given the repository identifier, the union name, union dis-
criminator, and all union members.
IDL-to-Java Language Mapping 19-51

ORB
Parameters
■ id - Repository identifier

■ name - Union name

■ members - Sequence of members, including name, typecode, and label for each
union member. The default label should be indicated with a type of octet and
value of zero.

Returns
■ Return a union typecode as described by the input parameters.

create_enum_tc
public abstract TypeCode create_enum_tc(String id,
 String name,
 String members[])

Creates enumerator typecode given the repository identifier, the enum name, and
the enum members.

Parameters
■ id - Repository identifier

■ name - Union name

■ members - Sequence of members

Returns
■ Return an enumerator typecode as described by the input parameters.

create_alias_tc
public abstract TypeCode create_alias_tc(String id, String name,
 TypeCode original_type)

Creates an alias typecode given the repository identifier, the structure name, and
the base typecode.

Parameters
■ id - Repository identifier

■ name - Alias name
19-52 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ORB
■ original_type - Typecode that the alias is based upon

Returns
■ Return an alias typecode as described by the input parameters.

 create_exception_tc
public abstract TypeCode create_exception_tc(String id,
 String name,
 StructMember members[])

Creates an exception typecode given the repository identifier, the exception name,
and any exception members.

Parameters
■ id - Repository identifier

■ name - Exception name

■ members - Sequence of members, including name and typecode for each excep-
tion member.

Returns
■ Return an exception typecode as described by the input parameters.

create_interface_tc
public abstract TypeCode create_interface_tc(String id,
 String name)

Creates an object typecode given the repository identifier and interface name.

Parameters
■ id - Repository identifier

■ name - Interface name

Returns
■ Return an object typecode as described by the input parameters.
IDL-to-Java Language Mapping 19-53

ORB
create_string_tc
public abstract TypeCode create_string_tc(int bound)

Creates a string typecode given the bounded length of the string.

Parameters
■ bound - Length of the string. If zero, the string is unbounded.

Returns
■ Return a string typecode as described by the input parameters.

 create_wstring_tc
public abstract TypeCode create_wstring_tc(int bound)

Creates a wide string typecode given the bounded length of the string.

Parameters
■ bound - Length of the string. If zero, the string is unbounded.

Returns
■ Return a wide string typecode as described by the input parameters.

create_sequence_tc
public abstract TypeCode create_sequence_tc(int bound,
 TypeCode element_type)

Creates a sequence typecode given the number and type of the sequence elements.

Parameters
■ bound - Number of elements in the sequence.

■ element_type - Type of the sequence element.

Returns
■ Returns a sequence typecode as described by the input parameters.
19-54 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ORB
 create_recursive_sequence_tc
public abstract TypeCode create_recursive_sequence_tc(int bound,
 int offset)

Creates a recursive sequence typecode given the number of elements, the offset in
bytes of the typecode, and the logical nesting offset.

Parameters
■ bound - Number of elements in the sequence

■ offset - Offset in bytes of the enclosing typecode

Returns
■ Return a recursive sequence typecode as described by the input parameters.

create_array_tc
public abstract TypeCode create_array_tc(int length,
 TypeCode element_type)

Creates an array typecode given the first index value and nested typecodes that
describe the rest of the index values and types.

Parameters
■ length - First index value.

■ element_type - The first of the nested typecodes.

Returns
■ Return an array typecode as described by the input parameters.

get_primitive_tc
public abstract TypeCode get_primitive_tc (TCKind tcKind)

Creates a primitive typecode given the kind representation of the primitive.

Parameters
■ tcKind - Specify one of the static integer constants defined in the

org.omg.CORBA.TCKind class.
IDL-to-Java Language Mapping 19-55

ORB
Returns
■ Return a primitive typecode as described by the input parameters.

create_any
public abstract Any create_any()

Creates a CORBA::Any primitive data type. The CORBA::any data type enables the
definition of any data type.

Returns
■ Return a CORBA::Any data type.

create_output_stream
public abstract OutputStream create_output_stream()

Creates an IIOP output stream.

Returns
■ An array of bytes constituting an IIOP buffer can be extracted from the stream.

init
public static synchronized ORB init(String args[],
 Properties props)

The init method is used to initialize the ORB runtime for the process and retrieve
the active ORB object reference. If the ORB runtime is already activated for the pro-
cess, the init method returns the active ORB object reference. Retrieving the ORB
object through the init method is used so that the application is not responsible for
storing the object. Thus, your application can invoke the init method multiple
times; it does not initialize multiple ORB runtimes for the process. Note that you
cannot change the Properties for the ORB on the second to nth call. If you are trying
to initialize the ORB and the Properties do not match, you have probably already
initialized the ORB.

Parameters
■ args - CORBA-compliant arguments. This parameter is not used. Supply a null

String[].

■ props - The init method can be invoked with certain properties:
19-56 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ORB
■ PROP_KEY_APP_NAME Application name - Sets a name for the entire applica-
tion.

Returns
■ The ORB object reference

init
public static synchronized ORB init(Applet app,
 Properties props)

The init method is used to initialize the ORB runtime for the process and retrieve
the active ORB object reference. If the ORB runtime is already activated for the pro-
cess, the init method returns the active ORB object reference. Retrieving the ORB
object through the init method is used so that the application is not responsible for
storing the object. Thus, your application can invoke the init method multiple
times; it does not initialize multiple ORB runtimes for the process. Note that you
cannot change the Properties for the ORB on the second to nth call. If you are trying
to initialize the ORB and the Properties do not match, you have probably already
initialized the ORB.

Parameters
■ app - The Java Applet

■ props - The init method can be invoked with certain properties:

■ PROP_KEY_APP_NAME Application name - Sets a name for the entire applica-
tion.

Returns
■ The ORB object reference

init
public static synchronized ORB init()

The init method is used to initialize the ORB runtime for the process and retrieve
the active ORB object reference. If the ORB runtime is already activated for the pro-
cess, the init method returns the active ORB object reference. Retrieving the ORB
object through the init method is used so that the application is not responsible for
storing the object. Thus, your application can invoke the init method multiple
times; it does not initialize multiple ORB runtimes for the process.
IDL-to-Java Language Mapping 19-57

ORB
Parameters
■ app - The Java Applet

Returns
■ The ORB object reference

bind
public abstract Object bind(String intf)

The bind method returns a reference to an object instance (implementation) of a
specified interface.

Once retrieved, each method invocation on the returned object reference is given to
the same object. If this object becomes inactive, the client runtime forwards the
request through the ORB to find another active object.

Parameters
■ intf - Interface id of the target interface. The IDL compiler generates this id.

This id may be retrieved through the interface's Helper::id method.

Returns
■ An object reference to the target object. The returned object must be typecast to

the interface type using the interface's Helper::narrow method.

bind
public abstract Object bind(String intf,
 String impl)

The bind method returns a reference to an object instance (implementation) of a
specified interface. The object satisfies the constraints of interface id and implemen-
tation id.

Once retrieved, each method invocation on the returned object reference is given to
the same object. If this object becomes inactive, the client runtime forwards the
request through the ORB to find another active object.

Parameters
■ intf - Interface id of the target interface. The IDL compiler generates this id.

This id yam be retrieved through the interface's Helper::id method.
19-58 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

ORB
■ impl - An optional user-defined implementation identifier. This identifier was
defined in the server application on the ORB::connect method. If no implemen-
tation is given in the bind, the ORB selects one of the active implementations of
the specified interface from its list of candidate hosts and binds the client to
that implementation.

Returns
■ An object reference to the target object. The returned object must be typecast to

the interface type using the interface's Helper::narrow method.

bind
public abstract Object bind(String intf,
 String impl,
 String host,
 int pid)

The bind method returns a reference to an object instance (implementation) of a
specified interface. The object satisfies the constraints of interface id, implementa-
tion id, and host:pid. An interface id must be specified. However, implementation
id and host:pid are only used if they're non-null. If the host:pid parameters are non-
null, the implementation id is required.

Once retrieved, each method invocation on the returned object reference is given to
the same object. If this object becomes inactive, the client runtime forwards the
request through the ORB to find another active object. If you wish to access a ran-
dom object on each request, specify the load balancing boolean.

Parameters
■ intf - Interface id of the target interface. The IDL compiler generates this id.

This id yam be retrieved through the interface's Helper::id method.

■ impl - An optional user-defined implementation identifier. This identifier was
defined in the server application on the ORB::connect method. If no implemen-
tation is given in the bind, the ORB selects one of the active implementations of
the specified interface from its list of candidate hosts and binds the client to
that implementation.

■ host - The name of the host where the object instance is located. Optional. If
specified, implementation name is required.

■ pid - A ub4 that specifies the process identifier of the object instance desired.
Optional. If specified, implementation name and host are required.
IDL-to-Java Language Mapping 19-59

Object (CORBA::Object)
Returns
■ An object reference to the target object. The returned object must be typecast to

the interface type using the interface's Helper::narrow method.

run
public abstract void run()

The run method enables all registered implementations to have incoming requests
received. This method blocks the thread while the ORB runtime services requests
for the implementations' operations. The process is blocked until the client requests
the ORB runtime to stop servicing requests through an ORB::stop method.

stop
public abstract void stop()

The stop method stops the ORB runtime from processing requests. Invoking stop
unblocks the ORB::run method within the server application.

shutdown
public abstract void shutdown()

The shutdown method terminates the ORB runtime for this process.

Object (CORBA::Object)
The Object interface contains methods that retrieve information about the object or
perform some action related to the object. The IDL Object pseudo object is mapped
to the org.omg.CORBA.Object classes.

■ Java

■ Description of Object Methods

Java
package org.omg.CORBA;
public interface Object {

boolean _is_a(String Identifier);
boolean _is_equivalent(Object that);
boolean _non_existent();
int _hash(int maximum);
org.omg.CORBA.Object _duplicate();
19-60 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Object (CORBA::Object)
void _release();
ImplementationDef _get_implementation();
InterfaceDef _get_interface();
Request _request(String s);
Request _create_request(Context ctx, String operation, NVList arg_list,

NamedValue result);
Request _create_request(Context ctx, String operation, NVList arg_list,

NamedValue result, ExceptionList exclist,
ContextList ctxlist);

}

Table 19–8 Description of Object Methods

_is_a
public boolean _is_a(String Identifier);

The _is_a method determines whether or not an object "is a" relationship exists
between and object reference and a particular interface. There is an "is a" relation-
ship if one of the following is true:

■ If the target object reference, that, is of the interface type of this object.

Method Description Section

_duplicate() Copies an object reference. on
page 19-63

_get_implementation() Returns an object reference’s implementation definition. on
page 19-63

_get_interface() Returns the interface definition of the given object. Depre-
cated.

 on
page 19-64

_hash(int) Returns a hash value for an object reference. on
page 19-63

_is_a(String) Determines whether an object has an "is a" relationship to
another object.

 on
page 19-61

_is_equivalent(Object) Compares two object references for equivalence. on
page 19-62

_non_existent() Determines whether a referenced object is reachable. on
page 19-62

_release() Releases resources used by an object reference. on
page 19-63
IDL-to-Java Language Mapping 19-61

Object (CORBA::Object)
■ If the target object reference, that, is derived from the target interface.

A network trip may be required to determine this relationship. If the target object is
not of the same interface type as this object and is not implemented in the current
process, the target object's remote implementation may be queried to determine the
inheritance relationship.

Since a network trip may be required, it is not always possible for the ORB to make
this determination.

Parameters
that - The object making the call has an "is a" relationship to that.

Returns
TRUE/FALSE

_is_equivalent
public boolean _is_equivalent(Object that);

The _is_equivalent method compares two object references for equivalence. This
operation tests for equivalence rather than equality because it is not always feasible
to determine whether two distinct object references refer to the same object instanti-
ation.

Returns
TRUE if the two object references are equivalent; FALSE otherwise. A TRUE return
value guarantees equivalence: in interface id of the object reference, and implemen-
tation id. However, a TRUE value does not mean that the object references are
pointing to the same object instantiation. In addition, a FALSE return value does
not necessarily mean the two references refer to different objects.

_non_existent
public boolean _non_existent();

The _non_existent method determines whether a referenced object is reachable or
not.
19-62 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Object (CORBA::Object)
Returns
A response of FALSE guarantees that the object does exist and is reachable. TRUE
guarantees that the object is unreachable at this time. TRUE does not guarantee
whether the object exists or not.

_hash
public int _hash(int maximum);

The _hash method gives a integer hash value within a range from 0 to maximum
that can be used for storing an object reference within a table.

Parameters
■ maximum - The maximum hash value that can be returned from this method.

Returns
A hash value for the object reference

_duplicate
public org.omg.CORBA.Object _duplicate();

The _duplicate method copies an object reference.

Returns
An object reference that is a duplicate of this one.

_release
public void _release();

The _release method releases the resources used by an object reference.

_get_implementation
ImplementationDef _get_implementation();

Given an object reference, the _get_implementation method returns its implementa-
tion definition. This operation is only valid in the process in which the object was
activated.
IDL-to-Java Language Mapping 19-63

Object (CORBA::Object)
Returns
The implementation definition for the object.

_get_interface
InterfaceDef _get_interface();

The _get_interface method returns the interface definition of the given object. This
method was deprecated in the CORBA 2.0 specification.
19-64 Oracle Application Server 4.0 Developer’s Guide: EJB, ECO/Java, and CORBA Applications

Index

Symbols
_client.jar, 4-16, 5-15, 12-11, 13-15
_duplicate method, 19-63
_get_implementation method, 19-63
_get_interface method, 19-64
_hash method, 19-63
_is_a method, 19-61
_is_equivalent method, 19-62
_non_existent method, 19-62
_release method, 17-15, 19-63
_server.jar, 4-16, 12-11

A
AccessControlEntries class, 4-7
activation, 3-8, 11-8
addToEnvironment method, 5-13, 13-13
alphabetic characters, in IDL, 18-3
Any data type

IDL syntax, 18-33
APPLET tag, 5-16, 13-17

requirements, 5-15, 5-16, 13-16, 13-17
appletinstance property, 5-5, 13-5
APPLICATION section, 12-2
APPLICATION.ENV section, 12-2
applications

deploying, syntax, 8-2
deregistering, 8-7
instances, 2-3, 10-3

parameters, 4-18
specifying names, 5-4

arrays
IDL syntax, 18-38

attributes
IDL syntax, 18-43
in, 17-5
inout, 17-5
out, 17-5

authentication string, 12-16
set, 4-6, 4-21

authenticationString
ECO.APP parameter, 12-6

B
BAD_CONTEXT exception, 18-50
BAD_INV_ORDER exception, 18-49
BAD_OPERATION exception, 18-49
BAD_PARAM exception, 18-49
BAD_TYPECODE exception, 18-49
bean

accessing remotely, 3-13
activating, 3-8
creating, 3-1
environment, 3-10
interface

remote access, 3-2
naming conventions, 3-3
passivating, 3-8
pool, 3-13
removing, 3-4, 3-8
server-side, 2-1
session, 2-4

creating, 3-7
example, 3-10

stateful, 3-13, 3-14
stateless, 3-13, 3-14, 3-15
Index-1

testing equality, 3-4
begin method, 6-16

ECO/Java, 14-12, 14-18, 16-17
EJB, 6-14, 6-16, 6-21

bind method, 5-14, 13-14, 17-14
syntax, 19-58

boolean, 19-10
business logic, 2-1

C
caching

cleanup, 5-17, 13-26
default, 5-17, 13-25
terminating, 5-18, 13-26

callback, 13-19
creating, 13-17
save object reference, 13-20

character
graphic, 18-5
Java mapping, 19-11
literals, 18-9

className property, 12-5
CLASSPATH, 4-19, 12-15
client

callback, 13-17, 13-19
creating, 17-14
deploying applications, 8-1
EJB, 2-6, 5-1
JAR file downloading, 8-8
migrating

JCORBA to ECO/Java, 15-9
JCORBA to EJB, 7-12

migrating from ECO/Java to EJB, 7-13
non-Java, 5-1, 13-1, 13-15
running applications, 8-1, 17-16
stub file, 17-4
using ORB, 5-2, 13-2
view of ECO/Java objects, 10-4

co-location, 5-16, 13-25
COMM_FAILURE exception, 18-49
comments, in IDL, 18-7
commit method

ECO/Java, 14-12, 14-19, 16-17
EJB, 6-14, 6-16, 6-21

compiling IDL files, 17-7
component model

ECO/Java, 10-1
EJB, 2-1

composeName method, 5-13, 13-13
composite names, 4-16, 12-11
configuring

ECO/Java applications, 12-12
EJB applications, 4-17

connect method, 17-13, 17-17, 19-49
constants

declarations in IDL, 18-25
container, 2-3, 10-3
context

initial, 5-3 to 5-6, 13-3 to 13-6
intermediate, 5-3, 5-9, 5-14, 13-3, 13-9, 13-14
session, 3-10, 11-9
transaction, 3-10, 11-9

Context class, 5-5, 5-9, 13-5, 13-9
ControlDescriptor class, 4-7, 4-11, 6-2, 6-5, 6-11,

6-18, 6-23
CORBA, 5-2, 11-3, 11-17, 13-2, 13-18

API, 1-7
Enterprise CORBA Objects for Java

see ECO/Java
generate stubs, 11-17
infrastructure, 1-8
objects, 2-2, 13-22

CORBA::Object pseudo-object, 19-29
CosNaming service, 2-3, 10-3
create method

ECOHome interface, 11-2, 11-5, 11-13, 11-14,
11-16, 13-20

EJBHome interface, 3-2, 3-5, 3-13, 3-14, 3-16
restrictions, 3-3

create_alias_tc method, 19-52
create_any method, 19-56
create_array_tc method, 19-55
create_enum_tc method, 19-52
create_exception_tc method, 19-53
create_interface_tc method, 19-53
create_output_stream method, 19-56
create_recursive_sequence_tc method, 19-55
create_sequence_tc method, 19-54
create_string_tc method, 19-54
Index-2

create_struct_tc method, 19-51
create_union_tc method, 19-51
create_wstring_tc method, 19-54
CreateException exception, 3-11, 11-10
createSubContext method, 5-14, 13-14
creating exception class, 3-6, 11-6

D
DAD

transactional
ECO/Java, 14-2, 14-4, 14-8, 14-13
EJB, 4-6, 6-2, 6-4, 6-8, 6-15

data types
IDL syntax, 18-30

DATA_CONVERSION exception, 18-50
decimal digits, in IDL, 18-5
deploying

applications, 4-15, 8-1, 8-6
examples, 8-2, 8-5
JAR files, 8-3
new node, 8-7
oasdeploy utility, 8-2
primary node, 8-6
remote node, 8-3, 8-6
removing an application, 8-3
removing deployed applications, 8-7
security, 8-8

deployment descriptors, 3-2, 4-1, 5-4, 11-2
application level, 4-5
bean level, 4-7
creating, 4-2
description, 4-1
example, 4-8
OASSessionDescriptor, 4-7
transaction, 6-4, 14-4
using eco2ejb, 4-2

deployment information file, 12-1
application section, 12-2, 12-3
creating, 12-2
creating JAR files, 4-13, 12-8
example, 12-6, 12-7
name, 12-2
object section, 12-4
properties

objects, 12-3
retrieving from, 12-8
values, 12-8

DeploymentDescriptor class, 4-5, 4-11, 5-4
deregistering deployed applications, 8-7
destroySubContext method, 5-14, 13-14
development

environment, 2-6, 10-6
flowchart, 2-7, 10-7

disconnect method, 17-14, 19-51
double, 19-12
downloading client JAR file, 8-8
DriverManager class

getConnection method, 6-3, 6-5, 14-3, 14-5

E
ECO/Java, 1-7

application instances, 10-3
architecture, 10-5
clients, 10-6, 13-1
component model, 10-1
configuring, 12-12
container, 10-2, 10-3
conversion to EJB, 11-20
creating JAR files, 12-8
creating objects, 11-1, 11-2
debugging, 12-20
deploying, 10-3, 12-10
deployment information file, 12-1 to 12-3
destroying objects, 13-13
environment variables, 12-14
features, 10-2
files required by clients, 13-14
guidelines, 11-20
installing JAR files, 12-8
instantiate, 13-12
invoking methods on objects, 13-12
JAR files, 13-15
logging, 12-15, 12-21
migrating to EJB, 7-12

clients, 7-13
ECO.APP, 7-13
oracle.oas.eco packages, 7-12

modifying applications, 12-17
Index-3

object name, 13-3
object section, 12-4, 12-13
overview, 10-1
parameters, 12-14
performance, 12-14, 12-16, 12-18
priority, 12-14
properties

applications, 12-3
objects, 12-3

reinstalling applications, 12-17
relation to CORBA, 10-1
relation to EJB specification, 10-1
remote interface objects, 11-3
roles, 10-2
server, 10-2 to 10-3

parameters, 12-12
timeout, 12-16
transaction property, 12-16
transactional objects, 14-1

declarative, 14-4
JTS driver, 14-3
programmatic, 14-11

transport protocol, 10-5
user created objects, 10-2

eco2ejb utility, 4-2, 4-14
ecoActivate method, 11-7, 11-8, 11-11, 16-13
ecoapi.jar, 12-9, 13-15
ECO.APP, 4-3, 12-2, 12-9, 13-22

migrating to EJB deployment descriptors, 7-13
ECOBean interface, 16-4
ECOContext interface, 11-9, 16-5
ecoCreate method, 11-2, 11-5, 11-10, 11-14
ECOHome interface, 11-2, 11-3, 11-5
ECOMetaData interface, 16-9
ECOObject interface, 11-2, 11-3, 11-4
ecoPassivate method, 11-7, 11-11, 16-13
ecoRemove method, 11-8, 11-11, 11-14, 16-13
EJB, 1-4, 1-6, 3-1

applet client, 5-16, 13-17
application instances, 2-3
application name, 4-6
architecture, 2-5
authentication string, 4-21
bean parameters, 4-18
client view, 2-4

clients, 2-6, 5-1
component model, 2-1, 2-3
configuring, 4-17
container, 2-1, 2-2, 2-3
creating beans, 3-1
creating JAR files, 4-13
debugging, 4-25
deploying, 4-15, 4-22
deployment descriptors, 4-1
destroying objects, 5-13
environment variables, 4-19
features, 2-2
files required by clients, 5-15
instance parameters, 4-18
instantiate, 5-12
invoking methods on objects, 5-12
JAR files, 4-13
jar files, 4-13, 5-15
logging, 4-20, 4-25
manifest file, 4-12
migrating, 7-14
modifying, 4-22
object name, 5-3
object-level parameters, 4-18
overview, 2-1
parameters, 4-19
performance, 4-19, 4-24
reinstalling, 4-22
relation to CORBA, 2-1
remote interface, 3-3
roles, 2-2
server, 2-1, 2-2, 2-3
server-level parameters, 4-17
timeout, 4-20
transactions, 4-20, 6-1

DADs, 4-6
declarative, 6-4
enable, 4-6
JTS driver, 6-3
programmatic, 6-13

user created beans, 2-2
ejbActivate method, 3-7, 3-8, 3-11
ejbapi.jar, 4-13, 5-15
EJBContext interface, 3-9
ejbCreate method, 3-2, 3-5, 3-11, 3-14
Index-4

EJBHome interface, 3-1, 3-3, 3-5
ejb-jar file, 3-2
EJBMetaData interface, 3-5
EJBObject interface, 3-1, 3-3, 3-4
ejbPassivate method, 3-7, 3-8, 3-11
ejbRemove method, 3-8, 3-11, 3-14
Enterprise CORBA Objects for Java

see ECO/Java
Enterprise Java Beans

see EJB
entity components, 2-4, 10-4
enum

IDL syntax, 18-36
environment

retrieve, 3-10, 11-9
variables, 4-19, 12-14

Environment object
access, 5-13, 13-13

exception, 3-6, 11-6
BAD_CONTEXT, 18-50
BAD_INV_ORDER, 18-49
BAD_OPERATION, 18-49
BAD_PARAM, 18-49
BAD_TYPECODE, 18-49
COMM_FAILURE, 18-49
DATA_CONVERSION, 18-50
FREE_MEM, 18-49
IDL declaration, 18-39
IMP_LIMIT, 18-49
INITIALIZE, 18-49
INTERNAL, 18-49
INTF_REPOS, 18-50
INV_FLAG, 18-49
INV_IDENT, 18-49
INV_OBJREF, 18-49
INVALID_TRANSACTION, 18-50
MARSHAL, 18-49
NO_EXCEPTION, 18-49
NO_IMPLEMENT, 18-49
NO_MEMORY, 18-49
NO_PERMISSION, 18-49
NO_RESOURCES, 18-49
NO_RESPONSE, 18-49
non-CORBA, 13-16
OBJ_ADAPTER, 18-50

OBJECT_NOT_EXIST, 18-50
PERSIST_STORE, 18-49
SYSTEM_EXCEPTION, 18-49
TRANSACTION_REQUIRED, 18-50
TRANSACTION_ROLLEDBACK, 18-50
TRANSIENT, 18-49
UNKNOWN, 18-49
USER_EXCEPTION, 18-49

exportObject method, 16-23

F
floating point

IDL syntax, 18-10
Java mapping, 19-12

formatting characters, in IDL, 18-7
forward declarations, in IDL, 18-22
FREE_MEM exception, 18-49

G
Gatekeeper, 5-16, 13-17
get_primitive_tc method, 19-55
getAuthenticationString method, 9-8
getCallerIdentity method, 16-5
getConnection method, 6-3, 6-5, 6-9, 14-3, 14-5,

14-9
getECOHome method, 11-4, 11-10, 16-9
getECOObject method, 16-11, 16-15
getEJBHome method, 3-4, 3-10
getEnvironment method, 3-10, 5-13, 11-9, 12-8,

13-13, 16-5
getHandle method, 3-4, 11-4
getHome method, 16-6
getHomeInterfaceClass method, 16-9
getMaxInstances method, 9-9
getMinInstances method, 9-9
getNameParser method, 5-13, 13-13
getOtherApplications method, 9-5
getPrimaryKey method, 3-4, 11-4
getPrimaryKeyClass method, 16-10
getRemoteInterfaceClass method, 16-10
getRollbackOnly method, 3-10, 11-10, 16-6
getSeverity method, 9-3, 16-22
getStatus method, 16-18
Index-5

getTxDads method, 9-5
getTxEnabled method, 9-6
getUserTransaction method, 3-10, 6-15, 11-9, 16-7

H
handle

retrieve home interface, 3-5, 11-5
retrieving, 3-4, 11-4

Handle interface, 16-11
Helper class, 17-6, 17-8

id method, 17-14
narrow method, 17-7, 17-15

HeuristicMixedException exception, 16-25
HeuristicRollbackException exception, 16-26
Holder class, 17-6, 17-7, 17-8
home interface, 7-12

see interface, home
homeInterface property, 12-5
HTTP, 5-2, 13-2

I
id method, 17-14
identifier

IDL syntax, 18-7
implementation, 17-14, 17-17
interface, 17-14, 17-17

IDL, 11-17, 12-7
compiling, 13-16, 17-6, 17-7, 19-1
data types, 18-29
declaring exceptions, 18-39
declaring operations, 18-40
defined, 17-3, 18-2
grammar, 18-13
identifiers, 18-7
interface

definition, 17-5
identifier, 17-10
syntax, 18-20

JAR requirements, 12-9
keywords, 18-8
language mapping, 17-5, 17-7
lexical conventions, 18-3, 18-11
master file, 11-17

module declarations, 18-19
precompiler options, 18-12
preprocessing, 18-11
punctuation, 18-9
similarity to C++, 18-2
skeleton, 17-3

duties, 17-4
generating, 17-6, 17-8
use of, 17-10

specification syntax, 18-19
stub, 17-3

duties, 17-4
generating, 17-6, 17-8

tokens, 18-7, 18-9
IDL compiler, 13-16
idleTimeOut property, 12-3, 12-5
idlFiles property, 12-4
idlInterfaces property, 12-4
IIOP, 2-5, 5-2, 10-5, 13-2

Java RMI/IIOP, 2-4
mapping, 2-4, 10-4

IMP_LIMIT exception, 18-49
implementation

creating operations, 17-11
defined, 17-10
identifier, 17-14, 17-17
register with ORB, 17-12

IMR, 17-14
in directional attribute for parameters, 17-5, 18-42
inheritance, 18-23
init method, 17-11, 17-12, 17-14, 19-56
INITIAL_CONTEXT_FACTORY property, 5-5,

5-6, 13-5, 13-6, 13-23
InitialContext, 13-6

ECO/Java, 13-5, 13-6, 13-23
EJB, 5-5, 5-6

INITIALIZE exception, 18-49
inout directional attribute for parameters, 17-5,

18-42
installation

oasdeploy, 8-7
instances

maximum, 4-6
set minimum, 4-6

integer literals, 18-9
Index-6

interface
creation, 17-4
declarations in, 18-21
defined, 17-5
home

creating, 3-1, 3-5, 11-2, 11-5
ECO/Java, 10-4, 13-2
EJB, 2-4, 5-2, 5-4
example, 3-6, 11-5
migrating from JCORBA to ECO/Java, 15-2
requirements, 3-3, 11-3
retrieving, 3-4, 3-15, 5-3, 11-4, 11-15, 13-3

identifier, 17-10, 17-14, 17-17
IDL syntax, 18-20
implementing operations, 17-11
inheritance, 18-21, 18-23
remote

creating, 3-1, 3-3, 11-2, 11-3
ECO/Java, 10-4, 13-2, 13-17
EJB, 2-4, 5-2
example, 3-5, 11-4
instantiate, 5-12, 13-12
migrating from JCORBA to ECO/Java, 15-2
migrating from JCORBA to EJB, 7-2
requirements, 3-3, 11-3
use, 3-15, 11-15

INTERNAL exception, 18-49
Internet Inter-ORB Protocol

see IIOP
INTF_REPOS exception, 18-50
INV_FLAG exception, 18-49
INV_IDENT exception, 18-49
INV_OBJREF exception, 18-49
INVALID_TRANSACTION exception, 18-50
isCallerInRole method, 16-7
isIdentical method, 3-4, 11-4
isSession method, 16-10
isTxEnabled method, 9-6

J
JAR

_client, 5-15, 13-15
creating, 12-8
creation, 4-13

downloading from client, 8-8
ecoapi.jar, 13-15
EJB, 3-2
ejbapi.jar, 5-15
files for Applet client, 5-15, 13-16
installing, 12-8
location of files, 4-15
oasoorb.jar, 5-15
vbjorb.jar, 13-15

jar utility, 4-15, 12-10
Java IDL mapping, 19-1
Java Naming and Directory Interface

see JNDI
Java RMI/IIOP, 10-4
Java Transaction Service

see JTS
Java Virtual Machine

see JVM
JAVA_COMPILER, 12-19
JAVA_HOME, 4-20, 12-15
javac compiler, 4-14, 12-9
javax.ejb.SessionSynchronization interface, 2-4
jco2ejb utility, 7-9, 7-10
JCO.APP, 14-5, 14-13

example, 14-3
migrating

JCORBA to ECO/Java, 15-3
JCORBA to EJB, 7-7, 15-7

transaction parameters, 14-2
JCORBA

differences from ECO/Java, 1-9
migrating to ECO/Java, 15-1

clients, 15-9
home interface, 15-2
implementation class, 15-2
JCO.APP, 15-3
LifeCycle interface, 15-2, 15-9
ObjectManager, 15-3
remote interface, 15-2

migrating to EJB, 7-1
clients, 7-12
exceptions, 7-3
home interface, 7-2
implementation, 7-3
initialization operations, 7-3
Index-7

jco2ejb utility, 7-9
JCO.APP, 7-7, 15-7
LifeCycle interface, 7-12
MANIFEST.MF, 7-10
ObjectManager class, 7-3
remote interface, 7-2
session context, 7-3

JDBC
access databases, 6-2, 6-8, 6-15, 14-2, 14-3
driver, 6-3
JTS aware, 6-2, 14-2
JTS, relation to, 14-8
transaction, 6-13, 14-11, 14-13
URL specification, 6-3, 14-4

JIT compiler, 12-18
see just-in-time compiler

JNDI, 5-2, 13-3
accessing through, 3-10, 11-10
client, 2-4, 5-2, 10-4, 13-2
composite names, 4-16, 12-11
context, 5-6, 5-14, 13-6, 13-14
ECO/Java, 13-3
EJB, 5-3
name, 5-4, 5-6, 5-10, 13-4, 13-6, 13-10

format, 5-7, 13-7
name space, 2-2
object reference, 5-3, 11-19
supported features, 5-13, 13-13
unsupported features, 5-14, 13-14

JServlet cartridge
improved performance, 12-20
installing JIT, 12-19
JIT compiler, 12-18

JTS, 6-2, 6-13, 14-2, 14-11
just-in-time compiler, 4-22, 12-18

improved performance, 4-24, 12-20
installing, 4-23, 12-19

JVM, 2-4, 10-4
garbage collection, 5-13, 13-13

K
keywords, in IDL, 18-8

L
LD_LIBRARY_PATH, 4-20, 12-15
legacy code

executing from CORBA objects, 17-18
LifeCycle interface

migrating
JCORBA to ECO/Java, 15-2, 15-9
JCORBA to EJB, 7-12

list method, 5-13, 13-13
list_initial_services method, 19-47
list_initial_services_remote method, 19-48
listBindings method, 5-13, 13-13
literals, in IDL, 18-9
LiveHTML cartridge

CORBA pseudo-object API for Perl clients, 19-1
logger, 12-15, 12-21

ECO/Java, 11-10, 11-11
EJB, 3-10, 3-11, 4-20, 4-25
levels, 1-8

Logger class, 9-2, 12-21, 16-20
ECO/Java, 11-10, 11-11, 16-20
EJB, 3-10, 3-11, 4-25, 9-2

lookup method, 5-9, 13-9
ECO/Java, 13-4, 13-6, 13-8, 13-9, 13-10, 13-13,

13-23
EJB, 5-4, 5-6, 5-8, 5-9, 5-10, 5-13

M
manifest file, 3-2, 4-1, 4-12
MANIFEST.MF, 4-3, 4-12, 7-10
MARSHAL exception, 18-49
master IDL file, 11-17
maxInstances property, 12-3
metadata, 3-5, 11-5
META-INF directory, 4-13
method overloading, 2-4, 3-3, 10-4
migrating

EJB, 7-14
JCORBA to ECO/Java, 15-1

clients, 15-9
implementation class, 15-2
LifeCycle interface, 15-2, 15-9

JCORBA to EJB, 7-1
Index-8

LifeCycle interface, 7-12
options, 1-9

migrating from ECO/Java to EJB
client, 7-13
ECO.APP, 7-13
home interface, 7-12
oracle.oas.eco packages, 7-12
remote interface, 7-12

minInstances property, 12-3
modules

IDL syntax, 18-19
multi-level names, 12-7
multiple inheritance, 18-23

N
name

absolute, 5-9, 13-9
composing, 5-13, 13-13
inherited, 18-46
JNDI, 5-3, 13-3
lookup, 5-13, 13-13
multi-level, 12-7
parser, 5-13, 13-13
property, 12-3
specifying in applications, 5-4

naming service
initialize, 5-5, 13-5
list, 5-13, 13-13

narrow method, 5-12, 13-12, 16-23, 17-7, 17-15
nested types, 18-47
NO_EXCEPTION exception, 18-49
NO_IMPLEMENT exception, 18-49
NO_MEMORY exception, 18-49
NO_PERMISSION exception, 18-49
NO_RESOURCES exception, 18-49
NO_RESPONSE exception, 18-49
NoPermissionException exception, 5-14, 13-14
NT

restrictions, 12-9

O
OASApplicationDescriptor class, 4-5, 6-2, 6-11,

6-18, 6-23, 9-4

constructor, 9-4
interface, 5-4
setTxDads method, 6-3
setTxEnabled method, 6-3

OASClientInterfaces.idl, 5-15, 13-15
oasdeploy, 8-1

arguments, 8-3
examples, 8-2
installation, 8-7
options, 8-3
overview, 8-1
redeploying, 4-22, 12-12, 12-17
syntax, 8-2

oasoidlc compiler, 11-17, 13-16, 17-6, 17-18, 19-1
oasoorb.jar file, 5-15
oasostat command, 17-16
OASSessionDescriptor class, 4-7
OBJ_ADAPTER exception, 18-50
object

accessing remotely, 11-13
activating, 11-8
binding, 17-14
connect, 17-13
CORBA, 13-18
creating, 5-2, 11-2, 13-2, 17-13
deactivating, 17-14
declaring stateful, 17-13
declaring stateless, 17-13
destroy, 5-2, 13-2
entity, 10-4
environment, 11-9
executing legacy methods, 17-18
instantiate, 5-12, 13-12
interface

remote access, 11-2
naming conventions, 11-3
passed by value

limitations, 3-3
passivating, 11-7
pool, 11-13
reference

applet client, 5-16, 13-17
creating, 17-14
destroying objects, 5-13, 13-13
ECO/Java object name, 13-3
Index-9

EJB object name, 5-3
invoking methods on objects, 5-12, 13-12
releasing, 17-15
required files, 5-15, 13-14
retrieving, 5-1, 13-1
typecasting, 17-15
using JNDI, 5-3, 13-3

removing, 11-4, 11-8
serialize, 11-7
servicing requests, 17-14
session, 11-10
state

name-value pair, 11-16
stateful, 11-13, 11-14
stateless, 11-13, 11-14, 11-15
testing equality, 11-4
viewing active, 17-17

Object interface
_duplicate method, 19-63
_get_implementation method, 19-63
_get_interface method, 19-64
_hash method, 19-63
_is_a method, 19-61
_is_equivalent method, 19-62
_non_existent method, 19-62
_release method, 17-15, 19-63

OBJECT_NOT_EXIST exception, 18-50
OBJECT_STATELESS, 17-13
object_to_string method, 19-49
OBJECT_TRANSIENT, 17-13
object-level parameters

ECO/Java, 12-13
EJB, 4-18

ObjectManager class
migrating

JCORBA to ECO/Java, 15-3
JCORBA to EJB, 7-3

OCI, 6-4, 14-4
octet, 19-11
operations

IDL declaration, 18-40
Operations class, 17-18
ORB, 5-2, 5-13, 13-2, 13-13

initialization, 17-11, 17-12, 17-14
registering implementations, 17-12

retrieving active ORB object, 17-11
retrieving object references, 17-14
servicing requests, 17-14
shut down, 17-15
stop servicing requests, 17-11, 17-14
termination, 17-12, 17-14

ORB interface, 17-11
bind method, 17-14, 19-58
connect method, 17-13, 17-17, 17-19, 19-49
create_alias_tc method, 19-52
create_any method, 19-56
create_array_tc method, 19-55
create_enum_tc method, 19-52
create_exception_tc method, 19-53
create_interface_tc method, 19-53
create_output_stream method, 19-56
create_recursive_sequence_tc method, 19-55
create_sequence_tc method, 19-54
create_string_tc method, 19-54
create_struct_tc method, 19-51
create_union_tc method, 19-51
create_wstring_tc method, 19-54
disconnect method, 17-14, 19-51
get_primitive_tc method, 19-55
init method, 17-12, 17-14, 19-56
list_initial_services method, 19-47
list_initial_services_remote method, 19-48
object_to_string method, 19-49
resolve_initial_references method, 19-47
resolve_initial_references_remote

method, 19-48
run method, 17-14, 19-60
shutdown method, 17-12, 17-15, 19-60
stop method, 17-11, 17-14, 19-60
string_to_object method, 19-49

ORBdisableLocator parameter, 5-16, 13-17
org.omg.CORBA.ORBClass parameter, 5-16, 13-17
out directional attribute for parameters, 17-5, 18-42
overloading, 10-4

P
PARAM tag, 5-16, 13-17
parameters, 4-19, 12-14
parser name, 5-13, 13-13
Index-10

passing by value, 3-17
passivation, 3-8, 11-7
PATH, 4-19, 12-15
performance, 4-19, 4-24, 12-14, 12-16, 12-18

JNDI features, 5-16, 13-25
perlidlc compiler, 13-16
PERSIST_STORE exception, 18-49
PL/SQL, invoking with Java, 2-6, 10-6
pl2java utility, 2-6, 10-6
PortableRemoteObject class, 5-12, 13-12, 16-23
pragma precompiler options, 18-12
precompiler options, 18-12
preprocessor tokens, in IDL, 18-9
Primary key, 3-3, 11-3
primary node

deploying on, 8-6
priority, 12-14
PROP_KEY_APP_NAME property, 19-57
punctuation characters, in IDL, 18-9

R
raises expression, 18-42
rebind method, 5-14, 13-14
remote interface, 7-12

see interface, remote
Remote Method Invocation

see RMI
remote node

deploying on, 8-6
running applications, 8-1

remoteInterface property, 12-5
remove method

ECOHome interface, 11-4, 11-14, 11-16, 13-2,
13-13

EJBHome interface, 3-4, 3-14, 3-16, 5-2, 5-13
removeFromEnvironment method, 5-13, 13-13
rename method, 5-14, 13-14
resolve_initial_references method, 19-47
resolve_initial_references_remote method, 19-48
RM Proxy, 2-3, 10-3
RMI, 1-4, 3-3, 3-17, 5-2, 10-4, 13-2

interface, 3-3, 3-4
rollback method, 16-18
run method, 17-14, 19-60

runFinalizersOnExit method, 17-12

S
scoped names, 18-44
security

deploying applications, 8-8
model, 2-4

SECURITY_CREDENTIALS
property, 5-14, 13-14

SECURITY_PRINCIPAL
property, 5-14, 13-14

SECURITY_PROTOCOL
property, 5-14, 13-14

sequences
IDL syntax, 18-36

serialization, 4-1
deployment descriptors, 5-4
ecoPassivate, 11-7
ejbPassivate, 3-8

server
beans, 2-1
creating, 17-12
ECO/Java, 10-3
EJB, 2-3
executing legacy code, 17-18
implementing operations, 17-11
parameters

ECO/Java, 12-12
EJB, 4-17

skeleton file, 17-4
starting, 17-16

session
bean

see bean, session
context, 3-8, 11-8

retrieving, 3-8, 11-8
object

creating, 11-6
example, 11-10
stateful and stateless, 11-14

SessionBean interface, 16-12
ECO/Java, 11-2, 11-7, 11-10
EJB, 3-2, 3-7, 3-10

SessionContext
Index-11

interface, 3-9, 11-9, 16-15
SessionContext class

getEnvironment method, 12-8
SessionDescriptor class, 4-2, 4-5, 4-7, 4-10, 6-11,

6-18, 6-23
SessionDescriptor interface, 3-16
setAccessControlEntries method, 4-8
setAuthenticationString method, 4-6, 9-10
setBeanHomeName method, 4-6, 4-7, 5-4
setControlDescriptors method, 4-8, 6-12
setEnterpriseBeanClassName method, 4-7
setEnvironmentProperties method, 4-7
setHomeInterfaceClassName method, 4-7
setHomeInterfaceName method, 5-4
setMaxInstances method, 4-6, 9-11
setMethod method, 4-7
setMinInstances method, 4-6, 9-11
setOtherApplications method, 4-6, 9-7
setReentrant method, 4-7
setRemoteInterfaceClassName method, 4-7
setRollbackOnly method, 3-10, 11-9, 16-7, 16-18
setSessionContext method, 3-8, 3-11, 11-8, 11-10,

16-12
setSessionTimeout method, 4-7
setSeverity method, 9-2, 16-21
setStateManagementType method, 3-16, 4-7, 6-23
setTransactionAttribute method, 4-7, 6-5, 6-7, 6-12,

6-18, 6-23
setTransactionTimeout method, 16-19
setTxDads method, 4-6, 6-3, 6-11, 6-18, 6-23, 9-7
setTxEnabled method, 4-6, 6-3, 6-11, 6-18, 6-23, 9-8
shutdown method, 17-12, 17-15, 19-60
skeletons, 17-4, 17-10
stateful

defining, 3-16, 11-16, 17-13
definition, 3-13, 3-14, 11-13, 11-14
description, 3-15, 11-15
session, 3-14, 11-14
transactions, 6-20, 14-17

STATEFUL_SESSION property, 3-16, 6-23
stateless

connect method, 17-13
defining, 3-16, 11-16
definition, 3-13, 3-14, 3-15, 11-13, 11-14, 11-15
description, 3-16, 11-16

session, 3-14, 11-14
transactions, 6-20, 14-17

stateless property, 12-5
STATELESS_SESSION, 3-16
stop method, 17-11, 17-14, 19-60
string_to_object method, 19-49
strings

IDL syntax, 18-37
Java mapping, 19-11
literals, 18-11

struct types
IDL syntax, 18-34

stubs, 11-17, 17-4
System interface

runFinalizersOnExit method, 17-12
SYSTEM_EXCEPTION exception, 18-49

T
THREADS_FLAG, 4-20, 12-15
tie mechanism, 17-18
timeout, 4-20, 12-16

object, 12-17
tokens, in IDL, 18-7, 18-9
tools, 2-6, 10-6
transaction, 4-20, 6-1, 14-1

attribute, 6-5
begin, 6-14, 6-21, 14-12, 14-18
commit, 3-10, 6-14, 6-21, 11-9, 14-12, 14-19
configure, 12-16
context, 3-10, 6-6, 11-9, 14-6

retrieve, 6-15
declarative, 6-1, 6-4, 14-1, 14-4

example, 6-7, 14-7
parameters, 14-2
programmatic, 6-1, 6-13, 14-1, 14-11

example, 6-14, 14-13
retrieve status, 3-10, 11-9
rollback, 3-10, 11-9
setting deployment descriptor, 6-4, 14-4
state, 6-20, 14-17
threading, 6-19, 14-16

TRANSACTION_REQUIRED exception, 18-50
TRANSACTION_ROLLEDBACK exception, 18-50
transactionalDads property, 12-4, 14-2
Index-12

TransactionMode directive, 14-6
transactionMode property, 12-5, 14-2
TransactionRolledbackException exception, 16-27
transactions, 14-2

enable, 4-6
property, 12-4

TRANSIENT exception, 18-49
translation unit, 18-12
transport protocol, 2-5, 10-5
TX_BEAN_MANAGED attribute, 6-3, 6-6, 6-7,

6-20, 14-3, 14-6, 14-7, 14-17
TX_BEAN_MANAGED_EXT attribute, 14-3
TX_MANDATORY attribute, 6-6, 6-7, 14-6, 14-7
TX_NOT_SUPPORTED attribute, 6-6, 6-7, 14-3,

14-6, 14-7
TX_REQUIRED attribute, 6-4, 6-6, 6-7, 14-4, 14-6,

14-7
TX_REQUIRES_NEW attribute, 6-6, 6-7, 6-19,

14-6, 14-7, 14-16
TX_SUPPORTS attribute, 6-6, 6-7, 14-6, 14-7
type declarations, 18-47
typedef

IDL syntax, 18-29
Java mapping, 19-28

U
unbind method, 5-14, 13-14
unexportObject method, 16-24
unions

IDL syntax, 18-34
Java mapping, 19-15

UNKNOWN exception, 18-49
USER_EXCEPTION exception, 18-49
UserException class, 11-6
UserTransaction class, 6-14, 14-12

interface, 16-16
usesApplications property, 12-3

V
vbjorb.jar file, 13-15
version

precompiler, 18-12
Visigenic Gatekeeper, 5-16, 13-17

W
Windows NT

restrictions, 4-14

Y
yoj.jar, 4-13, 4-14, 12-9
Index-13

Index-14

	1 Overview - EJB and ECO/Java
	Overview
	Guide for Developing Java Applications
	Support for Oracle Application Server 4.0.7 Applic...
	Migration Options

	2 Enterprise JavaBeans
	The Enterprise JavaBeans Component Model
	EJB Features Provided by Oracle Application Server...
	Client View of Enterprise Beans
	Differences Between EJB Components and Web Applica...
	Tools and Development Process
	Invoking PL/SQL Procedures
	Development Flowchart

	3 Creating Enterprise Beans
	Steps for Creating Session Beans
	Client Interfaces
	Creating the Session Bean Class
	Invoking Session Beans Remotely
	Stateful and Stateless Session Beans
	Object By Value Restrictions

	4 Creating Deployment Files
	Deployment Descriptors
	Manifest File
	Creating the JAR File for Installation
	Deploying Your EJB Application
	Configuring the EJB Application
	Re-deploying and Reloading Applications
	Improving Performance
	Debugging EJB Applications

	5 Developing Clients for EJB Applications
	Overview
	Getting the Object Reference for a Bean
	Invoking Methods on the Object
	Destroying an Object
	JNDI Supported Features
	Files Required by Clients
	APPLET Tags
	Performance Features of the JNDI Provider

	6 Transactions in EJB Objects
	Overview
	Declarative Transactions
	Programmatic Transactions
	Transactions and Threads
	Transactions for Stateful and Stateless Objects

	7 Migrating to OAS 4.0.8 EJB Applications
	Migrating OAS 4.0.7 JCORBA Applications
	Migrating Enterprise CORBA Objects (ECO/Java)
	Migrating OAS 4.0.7 EJB Applications

	8 Deploying Applications Using oasdeploy
	Overview of oasdeploy
	oasdeploy Syntax
	Deployment Scenarios
	Downloading to a Client
	Security

	9 Reference
	Logger Class
	setSeverity
	getSeverity

	OASApplicationDescriptor Class
	OASApplicationDescriptor constructor
	getOtherApplications
	getTxDads
	getTxEnabled
	isTxEnabled
	setOtherApplications
	setTxDads
	setTxEnabled
	getAuthenticationString
	getMaxInstances
	getMinInstances
	setAuthenticationString
	setMaxInstances
	setMinInstances

	10 Enterprise CORBA Objects for Java
	The Enterprise CORBA Objects for Java Component Mo...
	ECO/Java Features in Oracle Application Server
	Client View of ECO/Java Objects
	Differences Between ECO/Java Applications and Web ...
	Tools and Development Process
	Invoking PL/SQL Procedures
	Development Flowchart

	11 Creating ECO/Java Objects
	Steps for Creating ECO/Java Objects
	Client Interfaces
	Creating the SessionBean Class
	Invoking ECO/Java Objects Remotely
	Stateful and Stateless ECO/Java Objects
	Transforming Your CORBA IDL Application into ECO/J...
	Guidelines for Easy Conversion to EJB

	12 Creating the Deployment Information File
	Overview
	Structure of the Deployment Information File
	Retrieving Values from the Deployment Information ...
	Creating the JAR File for Installation
	Deploying your ECO/Java Application
	Configuring the ECO/Java Application
	Re-deploying and Reloading Applications
	Improving Performance
	Debugging ECO/Java Applications

	13 Developing Clients for ECO/Java Applications
	Overview
	Getting the Object Reference for an Object
	Invoking Methods on the Object
	Destroying an Object
	JNDI Supported Features
	Files Required by Clients
	APPLET Tags
	Creating Callbacks
	Performance Features of the JNDI Provider

	14 Transactions in ECO/Java Objects
	Overview
	Declarative Transactions
	Programmatic Transactions
	Transactions and Threads
	Transactions for Stateful and Stateless Objects

	15 Migrating JCORBA Applications to ECO/ Java
	Migrating JCORBA Server Objects
	Converting JCO.APP to ECO.APP
	Migrating Clients

	16 Reference
	ECOBean Interface
	ECOContext Interface
	getCallerIdentity
	getEnvironment
	getHome
	getRollbackOnly
	getUserTransaction
	isCallerInRole
	setRollbackOnly

	ECOMetaData Interface
	getHomeInterfaceClass
	getECOHome
	getPrimaryKeyClass
	getRemoteInterfaceClass
	isSession

	Handle Interface
	getECOObject

	SessionBean Interface
	setSessionContext
	ecoRemove
	ecoPassivate
	ecoActivate

	SessionContext Interface
	getECOObject

	UserTransaction Interface
	begin
	commit
	getStatus
	rollback
	setRollbackOnly
	setTransactionTimeout

	Logger Class
	setSeverity
	getSeverity

	PortableRemoteObject Class
	narrow
	exportObject
	unexportObject

	HeuristicMixedException Exception
	HeuristicMixedException()
	HeuristicMixedException(String)

	HeuristicRollbackException Exception
	HeuristicRollbackException()
	HeuristicRollbackException(String)

	TransactionRolledbackException Exception
	TransactionRolledbackException()
	TransactionRolledbackException(String)

	17 17 Accessing CORBA Objects from Java
	Version Requirements for Using Oracle Application ...
	Creating a CORBA Object within the ORB
	Steps in the Development Process
	Writing a Simple Server and Client
	Using the IDL-to-Java Compiler
	Running the Server and Client Applications
	Executing Legacy Code through the Tie Mechanism

	18 18 IDL Syntax and Semantics
	About IDL
	Lexical Conventions
	IDL Preprocessing
	IDL Grammar
	IDL Specification
	Inheritance
	Constant Declarations
	Type Declaration
	Exception Declaration
	Operation Declaration
	Attribute Declaration
	CORBA Module
	Names and Scoping
	Standard Exceptions

	19 19 IDL-to-Java Language Mapping
	Using the IDL/Java Language Mappings
	CORBA Pseudo-Object API for Java Clients
	Environment
	Exceptions
	Exception Lists
	Name-Value Pairs
	NV Lists
	Contexts
	ContextList
	Request
	ServerRequest
	TCKind
	TypeCode
	ORB
	Object (CORBA::Object)

	Index

